10.給出下列結(jié)論:
①(cosx)′=sinx;
②(sin$\frac{π}{3}$)′=cos$\frac{π}{3}$;
③若y=$\frac{1}{{x}^{2}}$,則y′=-$\frac{1}{x}$;
④(-$\frac{1}{\sqrt{x}}$)′=$\frac{1}{2x\sqrt{x}}$.
其中正確的個數(shù)是( 。
A.0B.1C.2D.3

分析 利用常用函數(shù)的求導(dǎo)公式逐一判定.

解答 解:對于①,(cosx)′=-sinx,故錯;
對于②,(sin$\frac{π}{3}$)′=0,故錯;
對于③,若y=$\frac{1}{{x}^{2}}$,則y′=-2$\frac{1}{{x}^{3}}$,故錯;
對于④,(-$\frac{1}{\sqrt{x}}$)′=$\frac{1}{2x\sqrt{x}}$,正確.
故選:B.

點評 本題考查了,常用函數(shù)的求導(dǎo)公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知各項都不相等的數(shù)列{an}滿足n≥2,$a_n^2+a_{n-1}^2-2{a_n}{a_{n-1}}-{a_n}+{a_{n-1}}=0$,a1=3.
(1)求數(shù)列的通項公式an;
(2)若${b_n}=\frac{1}{{n{a_n}}}$,求數(shù)列{bn}的前n項和Sn
(3)證明:${S_n}≥\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知二次函數(shù)f(x)=x2-2x+3
(Ⅰ)若函數(shù)$y=f({log_3}x+m),x∈[\frac{1}{3},3]$的最小值為3,求實數(shù)m的值;
(Ⅱ)若對任意互不相同的x1,x2∈(2,4),都有|f(x1)-f(x2)|<k|x1-x2|成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知圓心C的坐標為(2,-2),圓C與x軸和y軸都相切
(1)求圓C的方程
(2)求與圓C相切,且在x軸和y軸上的截距相等的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.在區(qū)間(0,1)上隨機地取兩個數(shù),則兩數(shù)之和小于$\frac{4}{3}$的概率為$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.給定矩陣A=$[\begin{array}{l}{1}&{2}\\{2}&{3}\end{array}]$,B=$[\begin{array}{l}{-\frac{3}{2}}&{2}\\{1}&{-1}\end{array}]$,設(shè)橢圓$\frac{{x}^{2}}{4}$+y2=1在矩陣AB對應(yīng)的變換下得到曲線F,求F的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=$\frac{2x-a}{{x}^{2}+2}$(x∈R).  
(1)若函數(shù)f(x)為奇函數(shù),求實數(shù)a的值;
(2)若函數(shù)f(x)在區(qū)間[-1,1]上是增函數(shù),求實數(shù)a的值組成的集合A;
(3)設(shè)關(guān)于x的方程f(x)=$\frac{1}{x}$的兩個非零實根為x1,x2,試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.圓的半徑為6cm,則圓心角為30°的扇形面積為3π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在平面直角坐標系xoy中,已知向量$\overrightarrow{m}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$),$\overrightarrow{n}$=(cosx,sinx),0≤x≤π,且f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$.
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求tanx的值;
(2)若$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{π}{3}$,求x的值;
(3)求f(x)的單調(diào)區(qū)間和最值.

查看答案和解析>>

同步練習(xí)冊答案