【題目】漳州市“網(wǎng)約車”的現(xiàn)行計價標(biāo)準(zhǔn)是:路程在2km以內(nèi)(含2km)按起步價8元收取,超過2km后的路程按1.9元/km收取,但超過10km后的路程需加收50%的返空費(即單價為1.9×(1+50%)=2.85元).
(1)將某乘客搭乘一次“網(wǎng)約車”的費用f(x)(單位:元)表示為行程x(0<x≤60,單位:km)的分段函數(shù);
(2)某乘客的行程為16km,他準(zhǔn)備先乘一輛“網(wǎng)約車”行駛8km后,再換乘另一輛“網(wǎng)約車”完成余下行程,請問:他這樣做是否比只乘一輛“網(wǎng)約車”完成全部行程更省錢?請說明理由.
【答案】
(1)解:由題意得,車費f(x)關(guān)于路程x的函數(shù)為:f(x)=
=
(2)解:只乘一輛車的車費為:f(16)=2.85×16﹣5.3=40.3(元).
換乘2輛車的車費為:2f(8)=2×(4.2+1.9×8)=38.8(元).
∵40.3>38.8,
∴該乘客換乘比只乘一輛車更省錢
【解析】(1)仔細(xì)審題,由漳州市“網(wǎng)約車”的計價標(biāo)準(zhǔn),能夠列出乘客搭乘一次B檔出租車的費用f(x)(元)表示為行程x(0<x≤60,單位:km)的分段函數(shù).(2)只乘一輛車的車費為:f(16)=2.85×16﹣5.3=40.3元,換乘2輛車的車費為:2f(8)=2×(4.2+1.9×8)=38.8元,由此能得到該乘客換乘比只乘一輛車更省錢.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠BAD=60°,PD⊥底面ABCD,點M、N分別是棱AB、CD的中點.
(1)證明:BN⊥平面PCD;
(2)在線段PC上是否存在點H,使得MH與平面PCD所成最大角的正切值為 ,若存在,請求出H點的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與曲線在第一象限和第三象限分別交于點和點,分別由點、向軸作垂線,垂足分別為、,記四邊形的面積為S.
⑴ 求出點、的坐標(biāo)及實數(shù)的取值范圍;
⑵ 當(dāng)取何值時,S取得最小值,并求出S的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=sin2x+2 cos2x﹣ ,函數(shù)g(x)=mcos(2x﹣ )﹣2m+3(m>0),若存在x1 , x2∈[0, ],使得f(x1)=g(x2)成立,則實數(shù)m的取值范圍是( )
A.(0,1]
B.[1,2]
C.[ ,2]
D.[ , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+blnx在x=1處有極值 .
(1)求a,b的值;
(2)求函數(shù)y=f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,且橢圓上一點與橢圓左右兩個焦點構(gòu)成的三角形周長為.
(1)求橢圓的方程;
(2)如圖,設(shè)點為橢圓上任意一點,直線和橢圓交于兩點,且直線與軸分別交于兩點,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某次數(shù)學(xué)測驗中,有6位同學(xué)的平均成績?yōu)?17分,用表示編號為的同學(xué)所得成 績,6位同學(xué)成績?nèi)绫恚?/span>
(1)求及這6位同學(xué)成績的方差;
(2)從這6位同學(xué)中隨機(jī)選出2位同學(xué),則恰有1位同學(xué)成績在區(qū)間中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (其中為自然對數(shù)的底數(shù)).
(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)若函數(shù)在區(qū)間上單調(diào)遞減,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,若關(guān)于的方程恰好有 4 個不相等的實數(shù)解,則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com