已知雙曲線
的離心率為
,頂點(diǎn)與橢圓
的焦點(diǎn)相同,那么雙曲線的焦點(diǎn)坐標(biāo)為_____;漸近線方程為_________.
;
.
試題分析:由于雙曲線的頂點(diǎn)坐標(biāo)為
,橢圓
的焦點(diǎn)坐標(biāo)為
,則有
,
設(shè)雙曲線
的焦距為
,則
,故雙曲線
是焦點(diǎn)坐標(biāo)為
,
,故雙曲線
的漸近線方程為
.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F
1,F(xiàn)
2,且|F
1F
2|=2,點(diǎn)P(1,
)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動直線
:
與橢圓C有且僅有一個公共點(diǎn),點(diǎn)M,N是直線l上的兩點(diǎn),且
,
,四邊形
面積S的求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C:
的離心率等于
,點(diǎn)P
在橢圓上。
(1)求橢圓
的方程;
(2)設(shè)橢圓
的左右頂點(diǎn)分別為
,過點(diǎn)
的動直線
與橢圓
相交于
兩點(diǎn),是否存在定直線
:
,使得
與
的交點(diǎn)
總在直線
上?若存在,求出一個滿足條件的
值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓
的左、右焦點(diǎn)分別為F
1(-1,0),F(xiàn)
2(1,0),過F
1作與x軸不重合的直線l交橢圓于A,B兩點(diǎn).
(I)若ΔABF
2為正三角形,求橢圓的離心率;
(II)若橢圓的離心率滿足
,
為坐標(biāo)原點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
的離心率為
,左焦點(diǎn)為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)若直線
與曲線
交于不同的
、
兩點(diǎn),且線段
的中點(diǎn)
在圓
上,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知
得頂點(diǎn)
、
分別是離心率為
的圓錐曲線
的焦點(diǎn),頂點(diǎn)
在該曲線上,一同學(xué)已正確地推得,當(dāng)
時有
,類似地,當(dāng)
時,有
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,設(shè)橢圓
的左右焦點(diǎn)分別為
,過焦點(diǎn)
的直線交橢圓于
兩點(diǎn),若
的內(nèi)切圓的面積為
,設(shè)
兩點(diǎn)的坐標(biāo)分別為
,則
值為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
設(shè)
F1、
F2分別是橢圓
的左、右焦點(diǎn),
P為橢圓上任一點(diǎn),點(diǎn)M的坐標(biāo)為(6,4),則
的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)e是橢圓
=1的離心率,且e∈(
,1),則實(shí)數(shù)k的取值范圍是 ( )
A.(0,3) | B.(3,) |
C.(0,3)∪(,+∞) | D.(0,2) |
查看答案和解析>>