解:(1)∵f(x+y)=f(x)+f(y)+2xy,令x=y=0,
∴f(0)=2f(0)
∴f(0)=0;
(2)令x=y=1代入f(xy)=f(x)f(y)∴f(1)=f(1)
2,
∵當(dāng)x≠0時(shí),f(x)≠0,
∴f(1)=1,
令y=x代入f(x+y)=f(x)+f(y)+2xy,f(xy)=f(x)f(y) (x,y∈R),
f(2x)=2f(x)+2x
2,f(2x)=f(2)f(x),
∴f(2)f(x)=2f(x)+2x
2,
∵f(2)=2f(1)+2=4,
∴f(x)=x
2,f(-x)=f(x)
∴f(x)為偶函數(shù);
(3)∵f(x)=alnx有兩個(gè)不同實(shí)數(shù)解,
∴令h(x)=f(x)-alnx=x
2-xlnx,
∴h′(x)=2x-
,令h′(x)=0,
解得x=±
,
當(dāng)-
<x<
時(shí),h′(x)<0,f(x)單調(diào)減函數(shù);
當(dāng)x≥
或x≤-
時(shí),h′(x)>0,f(x)單調(diào)增函數(shù);
如下圖:要求h(x)與x軸有兩個(gè)交點(diǎn),
可得h(-
)=0,
∴a=
分析:(1)令x=y=0代入f(x+y)=f(x)+f(y)+2xy,即可求解;
(2)求出f(x)的表達(dá)式再判斷奇偶性,由f(xy)=f(x)f(y),令x=y=1,得f(1)=1,再令y=x,代入f(x+y)=f(x)+f(y)+2xy,求出f(x),即可求解.
(3)令h(x)=f(x)-alnx,對(duì)其求導(dǎo),求出h(x)的單調(diào)區(qū)間,畫出草圖,即可求解;
點(diǎn)評(píng):此題考查抽象函數(shù)的問題,這類題一般都利用特殊值法,先求出幾個(gè)特殊值f(0),f(1)等,看似很難其實(shí)比較簡(jiǎn)單,最后一問用到了利用導(dǎo)數(shù)來求函數(shù)的單調(diào)區(qū)間,其中構(gòu)造函數(shù)h(x)很關(guān)鍵.