【題目】某品牌計(jì)算機(jī)售后保修期為1年,根據(jù)大量的維修記錄資料,這種品牌的計(jì)算機(jī)在使用一年內(nèi)需要維修1次的占15%,需要維修2次的占6%,需要維修3次的占4%.

1)某人購(gòu)買(mǎi)了一臺(tái)這個(gè)品牌的計(jì)算機(jī),設(shè)=“一年內(nèi)需要維修k,k=0,1,2,3,請(qǐng)?zhí)顚?xiě)下表:

事件

概率

事件是否滿(mǎn)足兩兩互斥?是否滿(mǎn)足等可能性?

2)求下列事件的概率:

A=“1年內(nèi)需要維修”;

B=“1年內(nèi)不需要維修

C=“1年內(nèi)維修不超過(guò)1”.

【答案】1)表格見(jiàn)解析;滿(mǎn)足兩兩互斥,不滿(mǎn)足等可能性. 2)①0.25 0.75 0.9

【解析】

(1)由題設(shè)條件求出,填寫(xiě)表格,利用互斥事件的定義判斷事件兩兩互斥;

(2)利用互斥事件的概率公式計(jì)算概率.

解:(1)因?yàn)橐荒陜?nèi)需要維修1次的占15%,需要維修2次的占6%,需要維修3次的占4%

所以

事件

概率

0.75

0.15

0.06

0.04

事件滿(mǎn)足兩兩互斥,不滿(mǎn)足等可能性.

2)①;

;

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某屆世界杯足球賽上,a,b,c,d四支球隊(duì)進(jìn)入了最后的比賽,在第一輪的兩場(chǎng)比賽中,a對(duì)b,c對(duì)d,然后這兩場(chǎng)比賽的勝者將進(jìn)入冠亞軍決賽,這兩場(chǎng)比賽的負(fù)者比賽,決出第三名和第四名.比賽的一種最終可能結(jié)果記為acbd(表示ab,cd,然后ac,bd.

1)寫(xiě)出比賽所有可能結(jié)果構(gòu)成的樣本空間;

2)設(shè)事件A表示a隊(duì)獲得冠軍,寫(xiě)出A包含的所有可能結(jié)果;

3)設(shè)事件B表示a隊(duì)進(jìn)入冠亞軍決賽,寫(xiě)出B包含的所有可能結(jié)果.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】假設(shè)有5個(gè)條件類(lèi)似的女孩(把她們分別記為A,BC,D, E)應(yīng)聘秘書(shū)工作,但只有2個(gè)秘書(shū)職位,因此5個(gè)人中只有2人能被錄用.如果5個(gè)人被錄用的機(jī)會(huì)相等,分別計(jì)算下列事件的概率;

1)女孩A得到一個(gè)職位;

2)女孩AB各得到一個(gè)職位;

3)女孩AB得到一個(gè)職位.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,點(diǎn)P,G分別是,的中點(diǎn),已知⊥平面ABC,==3,==2.

(I)求異面直線(xiàn)AB所成角的余弦值;

(II)求證:⊥平面

(III)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓C:的左、右焦點(diǎn)分別為、,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿(mǎn)足為線(xiàn)段的中點(diǎn),且AB。

(I)求橢圓C的離心率;

(II)若過(guò)A、B、三點(diǎn)的圓與直線(xiàn)相切,求橢圓C的方程;

(III)在(I)的條件下,過(guò)右焦點(diǎn)作斜率為k的直線(xiàn)與橢圓C交于M,N兩點(diǎn),在x軸上是否存在點(diǎn)P(m,0)使得以PM,PN為鄰邊的平行四邊形是菱形?如果存在,求出m的取值范圍;如果不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校高一、高二、高三三個(gè)年級(jí)共有名教師,為調(diào)查他們的備課時(shí)間情況,通過(guò)分層抽樣獲得了名教師一周的備課時(shí)間,數(shù)據(jù)如下表(單位:小時(shí)).

高一年級(jí)

高二年級(jí)

高三年級(jí)

(1)試估計(jì)該校高三年級(jí)的教師人數(shù);

(2)從高一年級(jí)和高二年級(jí)抽出的教師中,各隨機(jī)選取一人,高一年級(jí)選出的人記為甲,高二年級(jí)選出的人記為乙,求該周甲的備課時(shí)間不比乙的備課時(shí)間長(zhǎng)的概率;

(3)再?gòu)母咭弧⒏叨、高三三個(gè)年級(jí)中各隨機(jī)抽取一名教師,他們?cè)撝艿膫湔n時(shí)間分別是, (單位:小時(shí)),這三個(gè)數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記為,表格中的數(shù)據(jù)平均數(shù)記為,試判斷的大小,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐中,中點(diǎn),在平面內(nèi)的射影上,,,.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知離心率為的橢圓Ca>b>0)的左焦點(diǎn)為,過(guò)作長(zhǎng)軸的垂線(xiàn)交橢圓于、兩點(diǎn),且.

I)求橢圓C的標(biāo)準(zhǔn)方程;

II)設(shè)O為原點(diǎn),若點(diǎn)A在直線(xiàn)上,點(diǎn)B在橢圓C上,且,求線(xiàn)段AB長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)已經(jīng)成為全球最大的電商市場(chǎng),但是實(shí)體店仍然是消費(fèi)者接觸商品和品牌的重要渠道.某機(jī)構(gòu)隨機(jī)抽取了年齡介于10歲到60歲的消費(fèi)者200人,對(duì)他們的主要購(gòu)物方式進(jìn)行問(wèn)卷調(diào)查.現(xiàn)對(duì)調(diào)查對(duì)象的年齡分布及主要購(gòu)物方式進(jìn)行統(tǒng)計(jì),得到如下圖表:

主要購(gòu)物方式

年齡階段

網(wǎng)絡(luò)平臺(tái)購(gòu)物

實(shí)體店購(gòu)物

總計(jì)

40歲以下

75

40歲或40歲以上

55

總計(jì)

(1)根據(jù)已知條件完成上述列聯(lián)表,并據(jù)此資料,能否在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為消費(fèi)者主要的購(gòu)物方式與年齡有關(guān)?

(2)用分層抽樣的方法從通過(guò)網(wǎng)絡(luò)平臺(tái)購(gòu)物的消費(fèi)者中隨機(jī)抽取8人,然后再?gòu)倪@8名消費(fèi)者中抽取5名進(jìn)行答謝.設(shè)抽到的消費(fèi)者中40歲以下的人數(shù)為,求的分布列和數(shù)學(xué)期望.

參考公式:,其中.

臨界值表:

查看答案和解析>>

同步練習(xí)冊(cè)答案