19.如果集合P={x|x>-1},那么( 。
A.0⊆PB.{0}∈PC.∅∈PD.{0}?P

分析 根據(jù)元素與集合的關(guān)系進(jìn)行判斷

解答 解:集合P={x|x>-1},
對(duì)于A,0是元素,P是集合,應(yīng)該是屬于或者不屬于的關(guān)系,∴0∈P.
對(duì)于B:{0}是集合,應(yīng)該集合與集合的關(guān)系,∴{0}?P.
對(duì)于C:∅表示空集,空集是任何非空集合的真子集,∴∅?P.
對(duì)于D:{0}是含有一個(gè)元素的集合,與集合P是真子集的關(guān)系,∴{0}?P.
故選D.

點(diǎn)評(píng) 本題主要考查元素與集合的關(guān)系,屬于基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.按如圖所示的程序框圖運(yùn)算:若輸入x=17,則輸出的x值是143.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若滿足條件C=60°,AB=$\sqrt{3}$,BC=$\frac{9}{5}$的△ABC有2個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得$\sum_{i=1}^{10}{x_i}=80$,$\sum_{i=1}^{10}{y_i}=20$,$\sum_{i=1}^{10}{{x_i}{y_i}}=184$,$\sum_{i=1}^{10}{x_i^2}=720$.
(Ⅰ)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線性回歸方程$\hat y=\hat bx+\hat a$;
(Ⅱ)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(Ⅲ)若該居民區(qū)某家庭月收入為12千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
附:線性回歸方程$\hat y=\hat bx+\hat a$中,$\hat b=\frac{{\sum_{i=1}^n{{x_i}y{\;}_i^{\;}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.其中$\overline x$,$\overline y$為樣本平均值,線性回歸方程也可寫為$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.解關(guān)于x的不等式:${a^{{x^2}-8}}≥{a^{2x}}({a>0且a≠1})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.F1(-4,0)、F2(4,0)為兩個(gè)定點(diǎn),P為動(dòng)點(diǎn),若|PF1|+|PF2|=8,則動(dòng)點(diǎn)P的軌跡為( 。
A.橢圓B.直線C.射線D.線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在平面幾何中,有“若△ABC的周長(zhǎng)c,面積為S,則內(nèi)切圓半徑r=$\frac{2S}{c}$”,類比上述結(jié)論,在立體幾何中,有“若四面體ABCD的表面積為S,體積為V,則其內(nèi)切球的半徑r=( 。
A.$\frac{3V}{S}$B.$\frac{2V}{S}$C.$\frac{V}{2S}$D.$\frac{V}{3S}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若2a4+a3-2a2-a1=8,則2a5+a4的最小值為12$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若$\frac{π}{2}$<α<π,且sinα+cosα=$\frac{{\sqrt{10}}}{5}$,則tanα的值為-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案