5.已知△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,且acosA=bcosB,則該三角形的形狀是等腰三角形或直角三角形.

分析 利用正弦定理化簡(jiǎn)acosA=bcosB,通過(guò)兩角差的正弦函數(shù),求出A與B的關(guān)系,得到三角形的形狀.

解答 解:在△ABC中,∠A,∠B,∠C所對(duì)邊分別為a,b,c,若a cosA=b cosB,
所以sinAcosA=sinBcosB,所以2A=2B或2A=π-2B,
所以A=B或A+B=90°.
所以三角形是等腰三角形或直角三角形.
故答案為:等腰三角形或直角三角形.

點(diǎn)評(píng) 本題是基礎(chǔ)題,考查正弦定理在三角形中的應(yīng)用,三角形的形狀的判斷,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知{an}為等比數(shù)列,Sn為其前n項(xiàng)和,a2=2,S8=0,則S99=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.?dāng)?shù)列{an}滿足a1=1,且對(duì)于任意的n∈N*都有an+1=an+a1+n,則$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2017}}}}$等于( 。
A.$\frac{2016}{2017}$B.$\frac{4032}{2017}$C.$\frac{2017}{2018}$D.$\frac{4034}{2018}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若等差數(shù)列{an}前9項(xiàng)的和為27,且a10=8,則d=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如果存在常數(shù)a,使得數(shù)列{an}滿足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.
(1)若數(shù)列:2,3,6,m(m>6)是“兌換系數(shù)”為a的“兌換數(shù)列”,求m和a的值;
(2)已知有窮等差數(shù)列{bn}的項(xiàng)數(shù)是n0(n0≥3),所有項(xiàng)之和是B,求證:數(shù)列{bn}是“兌換數(shù)列”,并用n0和B表示它的“兌換系數(shù)”;
(3)對(duì)于一個(gè)不少于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知數(shù)列{an}滿足${a_{n+1}}=\frac{1}{{1-{a_n}}}(n∈{N^*})$,a8=2,則a1=$\frac{1}{2}$;若數(shù)列{an}的前n項(xiàng)和是Sn,則S2017=$\frac{2017}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.記不等式組$\left\{\begin{array}{l}4x+3y≥10\\ x≤3\\ y≤4\end{array}\right.$表示的平面區(qū)域?yàn)镈,過(guò)區(qū)域D中任意一點(diǎn)P作圓x2+y2=1的兩條切線,切點(diǎn)分別為A,B,則cos∠PAB的最大值為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{3}$C.$\frac{1}{3}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知平面向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(m,-4)$,且$\overrightarrow a∥\overrightarrow b$,則$\overrightarrow a•\overrightarrow b$=( 。
A.4B.-6C.-10D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系中,曲線C的方程為(x-2)2+y2=1,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)若P為曲線M:ρ=-2cosθ上任意一點(diǎn),Q為曲線C上任意一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案