【題目】某班隨機抽查了名學生的數(shù)學成績,分數(shù)制成如圖的莖葉圖,其中組學生每天學習數(shù)學時間不足個小時,組學生每天學習數(shù)學時間達到一個小時,學校規(guī)定分及分以上記為優(yōu)秀,分及分以上記為達標,分以下記為未達標.
(1)根據(jù)莖葉圖完成下面的列聯(lián)表:
達標 | 未達標 | 總計 | |
組 | |||
組 | |||
總計 |
(2)判斷是否有的把握認為“數(shù)學成績達標與否”與“每天學習數(shù)學時間能否達到一小時”有關.
參考公式與臨界值表:,其中.
科目:高中數(shù)學 來源: 題型:
【題目】某市環(huán)保部門對該市市民進行了一次動物保護知識的網(wǎng)絡問卷調查,每位市民僅有一次參加機會,通過隨機抽樣,得到參'與問卷調查的100人的得分(滿分:100分)數(shù)據(jù),統(tǒng)計結果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 15 | 5 | 10 |
若規(guī)定問卷得分不低于70分的市民稱為“動物保護關注者”,則山圖中表格可得列聯(lián)表如下:
非“動物保護關注者” | 是“動物保護關注者” | 合計 | |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合計 | 25 | 75 | 100 |
(1)請判斷能否在犯錯誤的概率不超過0.05的前提下認為“動物保護關注者”與性別有關?
(2)若問卷得分不低于80分的人稱為“動物保護達人”.現(xiàn)在從本次調查的“動物保護達人”中利用分層抽樣的方法隨機抽取6名市民參與環(huán)保知識問答,再從這6名市民中抽取2人參與座談會,求抽取的2名市民中,既有男“動物保護達人”又有女“動物保護達人”的概率.
附表及公式:,其中.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),在點處的切線方程為,求(1)實數(shù)的值;(2)函數(shù)的單調區(qū)間以及在區(qū)間上的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的前項的和為,公差,若,,成等比數(shù)列,;數(shù)列滿足:對于任意的,等式都成立.
(1)求數(shù)列的通項公式;
(2)證明:數(shù)列是等比數(shù)列;
(3)若數(shù)列滿足,試問是否存在正整數(shù),(其中),使,,成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的長軸和短軸為對角線的四邊形的面積為.
(1)求橢圓的方程;
(2)若直線與橢圓相交于,兩點,設為橢圓上一動點,且滿足(為坐標原點).當時,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形是菱形, ,平面平面
在棱上運動.
(1)當在何處時, 平面;
(2)已知為的中點, 與交于點,當平面時,求三棱錐的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com