分析 (Ⅰ)利用橢圓焦點(diǎn)坐標(biāo)橢圓結(jié)果的點(diǎn),結(jié)合橢圓的定義求解a,b,即可求出橢圓方程.
(Ⅱ)聯(lián)立直線與橢圓方程,求出交點(diǎn)坐標(biāo),即可求出弦長.
解答 解:(Ⅰ)∵橢圓C的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)為F(0,-$\sqrt{2}}$),∴$c=\sqrt{2}$,
點(diǎn)M(1,$\sqrt{2}}$)在橢圓C上
∴$2a=\sqrt{{{(1-0)}^2}+{{(\sqrt{2}+\sqrt{2})}^2}}+\sqrt{{{(1-0)}^2}+{{(\sqrt{2}-\sqrt{2})}^2}}$,(3分)
a=2,b2=a2-c2=2,
∴橢圓C的方程為$\frac{y^2}{4}+\frac{x^2}{2}=1$.(6分)
(Ⅱ)聯(lián)立直線l與橢圓C的方程$\left\{\begin{array}{l}2x-y-2=0\\ \frac{y^2}{4}+\frac{x^2}{2}=1.\end{array}\right.$
解得$\left\{\begin{array}{l}x{\;}_1=0\\{y_1}=-2.\end{array}\right.\left\{\begin{array}{l}{x_2}=\frac{4}{3}\\{y_2}=\frac{2}{3}.\end{array}\right.$(10分)
∴A(0,-2),$B(\frac{4}{3},\frac{2}{3})$.$|{AB}|=\sqrt{{{(\frac{4}{3}-0)}^2}+{{(\frac{2}{3}+2)}^2}}=\frac{4}{3}\sqrt{5}$.(12分)
點(diǎn)評(píng) 本題考查橢圓方程的求法,直線與橢圓的位置關(guān)系的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{13}{18}$ | B. | $\frac{1}{6}$ | C. | $\frac{13}{22}$ | D. | $\frac{3}{22}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | $\frac{1}{3}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{2}$ | B. | -$\frac{{\sqrt{3}}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com