【題目】2018年,依托用戶碎片化時(shí)間的娛樂(lè)需求、分享需求以及視頻態(tài)的信息負(fù)載力,短視頻快速崛起;與此同時(shí),移動(dòng)閱讀方興未艾,從側(cè)面反應(yīng)了人們對(duì)精神富足的一種追求,在習(xí)慣了大眾娛樂(lè)所帶來(lái)的短暫愉悅后,部分用戶依舊對(duì)有著傳統(tǒng)文學(xué)底蘊(yùn)的嚴(yán)肅閱讀青睞有加.
某讀書(shū)APP抽樣調(diào)查了非一線城市M和一線城市N各100名用戶的日使用時(shí)長(zhǎng)(單位:分鐘),繪制成頻率分布直方圖如下,其中日使用時(shí)長(zhǎng)不低于60分鐘的用戶記為“活躍用戶”.
(1)請(qǐng)?zhí)顚?xiě)以下列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為用戶活躍與否與所在城市有關(guān)?
活躍用戶 | 不活躍用戶 | 合計(jì) | |
城市M | |||
城市N | |||
合計(jì) |
(2)以頻率估計(jì)概率,從城市M中任選2名用戶,從城市N中任選1名用戶,設(shè)這3名用戶中活躍用戶的人數(shù)為,求的分布列和數(shù)學(xué)期望.
(3)該讀書(shū)APP還統(tǒng)計(jì)了2018年4個(gè)季度的用戶使用時(shí)長(zhǎng)y(單位:百萬(wàn)小時(shí)),發(fā)現(xiàn)y與季度()線性相關(guān),得到回歸直線為,已知這4個(gè)季度的用戶平均使用時(shí)長(zhǎng)為12.3百萬(wàn)小時(shí),試以此回歸方程估計(jì)2019年第一季度()該讀書(shū)APP用戶使用時(shí)長(zhǎng)約為多少百萬(wàn)小時(shí).
附:,其中.
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3) 百萬(wàn)小時(shí)
【解析】
(1)根據(jù)頻率分布直方圖求數(shù)據(jù)填入對(duì)應(yīng)表格,再根據(jù)卡方公式求,最后對(duì)照數(shù)據(jù)作判斷,(2)先確定隨機(jī)變量取法,再判斷從M城市中任選的2名用戶中活躍用戶數(shù)服從二項(xiàng)分布,從N城市中任選的1名用戶中活躍用戶數(shù)服從兩點(diǎn)分布,進(jìn)而求得對(duì)應(yīng)概率,列表得分布列,最后根據(jù)數(shù)學(xué)期望公式得期望,(3)先求均值,解得,再估計(jì)對(duì)應(yīng)函數(shù)值.
(1)由已知可得以下列聯(lián)表:
活躍用戶 | 不活躍用戶 | 合計(jì) | |
城市M | 60 | 40 | 100 |
城市N | 80 | 20 | 100 |
合計(jì) | 140 | 60 | 200 |
計(jì)算 ,
所以有99.5%的把握認(rèn)為用戶是否活躍與所在城市有關(guān).
(2)由統(tǒng)計(jì)數(shù)據(jù)可知,城市M中活躍用戶占,城市N中活躍用戶占,
設(shè)從M城市中任選的2名用戶中活躍用戶數(shù)為,則
設(shè)從N城市中任選的1名用戶中活躍用戶數(shù)為,則服從兩點(diǎn)分布,其中.
故,
;
;
;
.
故所求的分布列為
0 | 1 | 2 | 3 | |
.
(3)由已知可得,又,
可得,所以,所以.
以代入可得(百萬(wàn)小時(shí)),
即2019年第一季度該讀書(shū)APP用戶使用時(shí)長(zhǎng)約為百萬(wàn)小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.四棱柱的底面是直角梯形,,,,四邊形和均為正方形.
(1)證明;平面平面ABCD;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn),動(dòng)點(diǎn)滿足,的軌跡為曲線.
(1)求曲線的方程;
(2)過(guò)定點(diǎn)作直線交曲線于兩點(diǎn).設(shè)為坐標(biāo)原點(diǎn),若直線與軸垂直,求面積的最大值;
(3)設(shè),在軸上,是否存在一點(diǎn),使直線和的斜率的乘積為非零常數(shù)?若存在,求出點(diǎn)的坐標(biāo)和這個(gè)常數(shù);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+y2+x-6y+m=0與直線l:x+2y-3=0.
(1)若直線l與圓C沒(méi)有公共點(diǎn),求m的取值范圍;
(2)若直線l與圓C相交于P、Q兩點(diǎn),O為原點(diǎn),且OP⊥OQ,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱臺(tái)中,,M是的中點(diǎn),N在線段上,且,過(guò)點(diǎn)的平面把這個(gè)棱臺(tái)分為兩部分,求體積較小部分與體積較大部分的體積比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
(1)已知在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.
(2)若對(duì)任意的,不等式在上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)四邊形ABCD的頂點(diǎn)在橢圓上,且對(duì)角線AC,BD過(guò)原點(diǎn)O,設(shè),滿足.
(i)試證的值為定值,并求出此定值;
(ii)試求四邊形ABCD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某新上市的電子產(chǎn)品舉行為期一個(gè)星期(7天)的促銷活動(dòng),規(guī)定購(gòu)買該電子產(chǎn)品可免費(fèi)贈(zèng)送禮品一份,隨著促銷活動(dòng)的有效開(kāi)展,第五天工作人員對(duì)前五天中參加活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),y表示第x天參加該活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下,經(jīng)計(jì)算得.
x | 1 | 2 | 3 | 4 | 5 |
y | 4 | m | 10 | 23 | 22 |
(1)若y與x具有線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(2)預(yù)測(cè)該星期最后一天參加該活動(dòng)的人數(shù)(按四舍五入取到整數(shù)).
參考公式:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),,.
(1)求函數(shù)的極值;
(2)若在上為單調(diào)函數(shù),求的取值范圍;
(3)設(shè),若在上至少存在一個(gè),使得成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com