已知向量,,設函數(shù),.
(Ⅰ)求的最小正周期與最大值;
(Ⅱ)在中,分別是角的對邊,若的面積為,求的值.
(Ⅰ)的最小正周期為 ,的最大值為5;(Ⅱ) .
解析試題分析:(Ⅰ)求的最小正周期與最大值,首先須求出的解析式,由已知向量,,函數(shù),可將代入,根據(jù)數(shù)量積求得,進行三角恒等變化,像這一類題,求周期與最大值問題,常常采用把它化成一個角的一個三角函數(shù),即化成,利用它的圖象與性質,,求出周期與最大值,本題利用兩角和與差的三角函數(shù)公式整理成,從而求得的最小正周期與最大值;(Ⅱ)在中,分別是角的對邊,若的面積為,求的值,要求的值,一般用正弦定理或余弦定理,本題注意到,由得,可求出角A的值,由已知,的面積為,可利用面積公式,求出,已知兩邊及夾角,可利用余弦定理求出,解此類題,主要分清邊角關系即可,一般不難.
試題解析:(Ⅰ),∴的最小正周期為 ,的最大值為5.
(Ⅱ)由得,,即,∵,∴,
∴,又,即,
∴,由余弦定理得,
∴
考點:兩角和正弦公式,正弦函數(shù)的周期性與最值,根據(jù)三角函數(shù)的值求角,解三角形.
科目:高中數(shù)學 來源: 題型:解答題
已知,,且
(1)求函數(shù)的單調增區(qū)間;
(2)三角形ABC中,邊分別為角的對邊,若,B=,且, 求三角形ABC的邊的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知,其中,若函數(shù),且函數(shù)的圖象與直線相鄰兩公共點間的距離為.
(1)求的值;
(2)在中.分別是的對邊,且,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在⊿ABC中,角A,B,C的對邊分別為A,b,C,且滿足(2A-C)CosB=bCosC.
(Ⅰ)求角B的大;
(Ⅱ)已知函數(shù)f(A,C)=Cos2A+sin2C,求f(A,C)的最大值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com