【題目】已知曲線C的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)o為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程是:

(Ⅰ)求曲線C的普通方程和直線l的直角坐標(biāo)方程:

(Ⅱ)點(diǎn)P是曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l距離的最大值與最小值.

【答案】(Ⅰ),.(Ⅱ)最大值;最小值.

【解析】

)曲線C的參數(shù)方程消去參數(shù),能求出曲線C的普通方程;直線l的極坐標(biāo)方程化為,利用求出直線l的直角坐標(biāo)方程.

)設(shè),則P到直線l的距離:,由此能求出點(diǎn)P到直線l距離的最大值與最小值.

)∵曲線C的參數(shù)方程為為參數(shù)),

∴曲線C的普通方程為,

∵直線l的極坐標(biāo)方程是:,

,

∴直線l的直角坐標(biāo)方程為.

)∵點(diǎn)P是曲線C上的動(dòng)點(diǎn),

∴設(shè),則P到直線l的距離:

∴當(dāng)時(shí),點(diǎn)P到直線l距離取最大值;

當(dāng)時(shí),點(diǎn)P到直線l距離取最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

1)若xA,使得xB為真命題,求m的取值范圍;

2)是否存在實(shí)數(shù)m,使xAXB必要不充分條件,若存在,求出m的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題甲:對(duì)任意實(shí)數(shù),不等式恒成立;命題乙:已知滿足,且恒成立.

1)分別求出甲乙為真命題時(shí),實(shí)數(shù)的取值范圍;

2)求實(shí)數(shù)的取值范圍,使命題甲乙中有且只有一個(gè)真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】孝感市旅游局為了了解雙峰山景點(diǎn)在大眾中的熟知度,從年齡在1565歲的人群中隨機(jī)抽取人進(jìn)行問卷調(diào)查,把這人按年齡分成5組:第一組,第二組,第三組,第四組,第五組,得到的樣本的頻率分布直方圖如圖:

調(diào)查問題是雙峰山國(guó)家森林公園是幾級(jí)旅游景點(diǎn)?每組中回答正確的人數(shù)及回答正確的人數(shù)占本組的頻率的統(tǒng)計(jì)結(jié)果如下表.

1)分別求出的值;

2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第23,4組每組各抽取多少人;

3)在(2)抽取的6人中隨機(jī)抽取2人,求所抽取的兩人來自不同年齡組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(多選)統(tǒng)計(jì)某校名學(xué)生的某次數(shù)學(xué)同步練習(xí)成績(jī)(滿分150分),根據(jù)成績(jī)依次分成六組:,,,得到頻率分布直方圖如圖所示,若不低于140分的人數(shù)為110,則下列說法正確的是(

A.B.

C.100分以下的人數(shù)為60D.成績(jī)?cè)趨^(qū)間內(nèi)的人數(shù)占大半

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了培養(yǎng)學(xué)生的安全意識(shí),某中學(xué)舉行了一次安全自救的知識(shí)競(jìng)賽活動(dòng),共有800名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽的成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),得到如下的頻率分布表,請(qǐng)你根據(jù)頻率分布表解答下列問題:

序號(hào)(i

分組(分?jǐn)?shù))

組中值(Gi

頻數(shù)(人數(shù))

頻率(fi

1

65

0.10

2

75

20

3

85

0.20

4

95

合計(jì)

50

1.00

1)求出頻率分布表中①②③④⑤處的值;

2)為鼓勵(lì)更多的學(xué)生了解安全自救知識(shí),成績(jī)不低于85分的學(xué)生能獲獎(jiǎng),請(qǐng)估計(jì)在參加的800名學(xué)生中大約有多少名學(xué)生能獲獎(jiǎng);

3)求這800名學(xué)生的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次數(shù)學(xué)測(cè)驗(yàn)后,數(shù)學(xué)老師將某班全體學(xué)生(50人)的數(shù)學(xué)成績(jī)進(jìn)行初步統(tǒng)計(jì)后交給其班主任(如表).

分?jǐn)?shù)

5060

60~70

70-80

80-90

90~100

人數(shù)

2

6

10

20

12

請(qǐng)你幫助這位班主任完成下面的統(tǒng)計(jì)分析工作:

1)列出頻率分布表;

2)畫出頻率分布直方圖及頻率折線圖;

3)從頻率分布直方圖估計(jì)出該班同學(xué)成績(jī)的眾數(shù)、中位數(shù)和平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動(dòng)車購(gòu)買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就是越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了 某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號(hào)私家車的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

(1)按照我國(guó)《機(jī)動(dòng)車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價(jià)格的規(guī)定, ,記為某同學(xué)家的一輛該品牌車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)

(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車,假設(shè)購(gòu)進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:

①若該銷售商購(gòu)進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購(gòu)進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤(rùn)的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在《爸爸去哪兒》第二季第四期中,村長(zhǎng)給6萌娃布置一項(xiàng)搜尋空投食物的任務(wù).已知:①食物投擲地點(diǎn)有遠(yuǎn)、近兩處;②由于Grace年紀(jì)尚小,所以要么不參與該項(xiàng)任務(wù),但此時(shí)另需一位小孩在大本營(yíng)陪同,要么參與搜尋近處投擲點(diǎn)的食物;③所有參與搜尋任務(wù)的小孩須被均分成兩組,一組去遠(yuǎn)處,一組去近處,那么不同的搜尋方案有______.(以數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案