A. | $4\sqrt{3}+8\sqrt{3}sin(B+\frac{π}{6})$ | B. | $4\sqrt{3}+8sin(B+\frac{π}{3})$ | C. | $4\sqrt{3}+8\sqrt{3}cos(B+\frac{π}{6})$ | D. | $4\sqrt{3}+8cos(B+\frac{π}{3})$ |
分析 由正弦定理可得$\frac{AB}{sinC}=\frac{AC}{sinB}=\frac{BC}{sinA}=\frac{4\sqrt{3}}{\frac{\sqrt{3}}{2}}$=8,利用三角函數(shù)恒等變換的應(yīng)用,三角形內(nèi)角和定理,化簡即可得解.
解答 解:∵$∠A=\frac{π}{3},BC=4\sqrt{3}$,
∴由正弦定理可得:$\frac{AB}{sinC}=\frac{AC}{sinB}=\frac{BC}{sinA}=\frac{4\sqrt{3}}{\frac{\sqrt{3}}{2}}$=8,
∴△ABC的周長=BC+AB+AC=4$\sqrt{3}$+8sinC+8sinB
=4$\sqrt{3}$+8sin($\frac{2π}{3}$-B)+8sinB
=4$\sqrt{3}$+8($\frac{\sqrt{3}}{2}$cosB+$\frac{3}{2}$sinB)
=4$\sqrt{3}$+8$\sqrt{3}$sin(B+$\frac{π}{6}$).
故選:A.
點(diǎn)評 本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用在解三角形中的綜合應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | AB邊中線的三等分點(diǎn)(非重心) | B. | AB邊的中點(diǎn) | ||
C. | AB邊中線的中點(diǎn) | D. | 重心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 充要條件 | ||
C. | 必要不充分條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
與教育有關(guān) | 與教育無關(guān) | 合計(jì) | |
男 | 30 | 10 | 40 |
女 | 35 | 5 | 40 |
合計(jì) | 65 | 15 | 80 |
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.023 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com