11.某烹飪學(xué)院為了弘揚(yáng)中國傳統(tǒng)的飲食文化,舉辦了一場由在校學(xué)生參加的廚藝大賽.組委會為了了解本次大賽參賽學(xué)生的成績情況,從參賽學(xué)生中抽取了n名學(xué)生的成績(滿分100分)作為樣本,將所得數(shù)據(jù)經(jīng)過分析整理后畫出了頻率分布直方圖和莖葉圖,其中莖葉圖受到了污損,請據(jù)此解答下列問題:
(Ⅰ)求樣本容量n和頻率分布直方圖中a的值;
(Ⅱ)規(guī)定大賽成績在[80,90)的學(xué)生為廚霸,在[90,100]的學(xué)生為廚神.現(xiàn)從被稱為廚霸、廚神的學(xué)生中隨機(jī)抽取2人去參加校際之間舉辦的廚藝大賽,求所抽取的2人中至少有1人是廚神的概率.

分析 (Ⅰ)求出樣本容量,從而求出a的值,和平均數(shù);
(Ⅱ)廚霸有0.0150×10×40=6人,分別記為a1,a2,a3,a4,a5,a6,廚神有0.0075×10×40=3人,分別記為b1,b2,b3,共9人列出事件A包含的基本事件,從而求出滿足條件的概率即可.

解答 解:(Ⅰ)由題意可知,樣本容量$n=\frac{5}{0.0125×10}=40$,
所以$a=\frac{3}{40×10}=0.0075$.
所以平均成績?yōu)?5×0.125+65×0.2+75×0.45+85×0.15+95×0.075=73.5.
(Ⅱ)由題意可知,廚霸有0.0150×10×40=6人,分別記為a1,a2,a3,a4,a5,a6,廚神有0.0075×10×40=3人,分別記為b1,b2,b3,共9人.
從中任意抽取2人共有36種情況:(a1,a2),(a1,a3),(a1,a4),(a1,a5),(a1,a6),(a1,b1),(a1,b2),(a1,b3),(a2,a3),(a2,a4),(a2,a5),(a2,a6),(a2,b1),(a2,b2),(a2,b3),(a3,a4),(a3,a5),(a3,a6),(a3,b1),(a3,b2),(a3,b3),(a4,a5),(a4,a6),(a4,b1),(a4,b2),(a4,b3),(a5,a6),(a5,b1),(a5,b2),(a5,b3),(a6,b1),(a6,b2),(a6,b3),(b1,b2),(b1,b3),(b2,b3),
其中至少有1人是廚神的情況有21種,
所以至少有1人是廚神的概率為$\frac{21}{36}$=$\frac{7}{12}$.

點(diǎn)評 本題考查了頻率分布直方圖,莖葉圖,考查滿足條件的基本事件的概率問題,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.當(dāng)x∈(-1,2)時(shí),復(fù)數(shù)z=(x+1)+(x-2)i(x∈R)對應(yīng)的復(fù)平面內(nèi)的點(diǎn)在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若銳角△ABC的面積為$\frac{{3\sqrt{3}}}{2}$,且AB=2,AC=3,則BC=( 。
A.2B.$\sqrt{5}$C.$\sqrt{6}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時(shí),有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并證明你的結(jié)論;
(3)設(shè)f(1)=1,若f(x)<m2-2am+1,對所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x|a-1<x<2a+1},B={x|0<x<1}.
(Ⅰ)若0<a<1,求A∩B;
(Ⅱ)若A∩B=∅,求實(shí)數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合M={x||x|=1},N={x|$\frac{1}{2}$<2x<4,x∈Z},則M∩N等于(  )
A.{-1,1}B.{1}C.{0}D.{-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,已知正四棱柱ABCD-A1B1C1D1中,2AB=BB1,過點(diǎn)B作B1C的垂線交側(cè)棱CC1于點(diǎn)E.
(1)求證:面A1CB⊥平面BED;
(2)若AB=1,求點(diǎn)C到平面BDE的距離;
(3)取BB1的中點(diǎn)F,求D1E與C1F所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,角A,B,C所對的邊為a,b,c,已知a=3,b=2$\sqrt{6}$,∠B=2∠A.cosA的值等于$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若將函數(shù)y=cos 2x的圖象向左平移$\frac{π}{12}$個(gè)單位長度,則平移后圖象的對稱軸為( 。
A.x=$\frac{kπ}{2}$-$\frac{π}{6}$ (k∈Z)B.x=$\frac{kπ}{2}$+$\frac{π}{6}$ (k∈Z)C.x=$\frac{kπ}{2}$-$\frac{π}{12}$ (k∈Z)D.x=$\frac{kπ}{2}$+$\frac{π}{12}$ (k∈Z)

查看答案和解析>>

同步練習(xí)冊答案