已知直線x-2y+4=0經(jīng)過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左頂點A和上頂點D,橢圓C的右頂點為B,點P是橢圓C上位于x軸上方的動點,直線AP,BP與直線l:x=5分別交于M,N兩點.
(1)求橢圓C的方程;
(2)求線段MN的長度的最小值;
(3)當線段MN的長度最小時,Q點在橢圓上運動,記△BPQ的面積為S,當S在(0,+∞)上變化時,討論S的大小與Q點的個數(shù)之間的關(guān)系.
(1)由已知得橢圓C的左頂點為A(-4,0),上頂點為D(0,2),
∴a=4,b=2,
故橢圓C的方程為
x2
16
+
y2
4
=1

(2)直線AP的斜率k顯然存在,且k>0,故可設(shè)直線AP的方程為y=k(x+4),從而M(5,9k),設(shè)P(x0,y0),則kAPkBP=
y0
x0+4
y0
x0-4
=
y02
x02-16
=-
1
4
,∴直線BP的方程為:y=-
1
4k
(x-4)
,
N(5,-
1
4k
)

|MN|=|9k+
1
4k
|=9k+
1
4k
≥2
9k•
1
4k
=3

當且僅當9k=
1
4k
k=
1
6
時等號成立
k=
1
6
時,線段MN的長度取最小值3.
(3)由(2)知,當線段MN的長度取最小值時,k=
1
6
,此時直線BP的方程為3x+2y-12=0,P(
16
5
,
6
5
),|BP|=
2
5
13

設(shè)與BP平行的直線l':3x+2y+t=0
聯(lián)立
x2
16
+
y2
4
=1
3x+2y+t=0
得10x2+6tx+t2-16=0
由△=36t2-40(t2-16)=0得t=±4
10

t=-4
10
時,BP與l'的距離為
4
10
-12
13
,此時S△BPQ=
4
5
(
10
-3)

t=4
10
時,BP與l'的距離為
4
10
+12
13
,此時S△BPQ=
4
5
(
10
+3)

∴當0<s<
4
5
(
10
-3)
時,這樣的Q點有4個
S=
4
5
(
10
-3)
時,這樣的Q點有3個
4
5
(
10
-3)<s<
4
5
(
10
+3)
時,這樣的Q點有2個
S=
4
5
(
10
+3)
時,這樣的Q點有1個
S>
4
5
(
10
+3)
時,這樣的Q點不存在.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)選做題(考生只能從A、B、C題中選作一題)
A、已知直線x+2y-4=0與
x=2-3cosθ
y=1+3sinθ
(θ為參數(shù))相交于A、B兩點,則|AB|=
 

B、若關(guān)于x的方程x2+4x+|a-1|+|a+1|=0有實根,則實數(shù)a的取值范圍為
 

C、如圖,⊙O的直徑AB=6cm,P是延長線上的一點,過點P作⊙O的切線,切點為C,連接AC,若∠CAP=30°,
則PC=
 
cm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x-2y+4=0經(jīng)過橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左頂點A和上頂點D,橢圓C的右頂點為B,點P是橢圓C上位于x軸上方的動點,直線AP,BP與直線l:x=5分別交于M,N兩點.
(1)求橢圓C的方程;
(2)求線段MN的長度的最小值;
(3)當線段MN的長度最小時,Q點在橢圓上運動,記△BPQ的面積為S,當S在(0,+∞)上變化時,討論S的大小與Q點的個數(shù)之間的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x+2y-4=0與
x=2-3cosθ
y=1+3sinθ
(θ為參數(shù))相交于A、B兩點,則|AB|=
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選做題:(考生注意:請在下列三題中任選一題作答,如果多做,則按所做第一題評分)
A.(不等式選做題)不等式
x+5
(x-1)2
≥2
的解集是
[-
1
2
,1)∪(1,3]
[-
1
2
,1)∪(1,3]

B.(幾何證明選做題) 如圖,⊙O的直徑AB=6cm,P是延長線上的一點,過點P作⊙O的切線,切點為C,連接AC,若∠CAP=30°,則PC=
3
3
3
3

C.(坐標系與參數(shù)方程選做題)已知直線x+2y-4=0與
x=2-3cosθ
y=1+3sinθ
(θ為參數(shù))相交于A、B兩點,則|AB|=
6
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x+2y-4=0,則直線的斜率為__________,傾斜角為__________,在x軸、y軸上的截距分別為__________.

查看答案和解析>>

同步練習冊答案