【題目】某種機器零件轉(zhuǎn)速在符合要求的范圍內(nèi)使用時間隨機器運轉(zhuǎn)速度的變化而變化,某檢測員隨機收集了20個機器零件的使用時間與轉(zhuǎn)速的數(shù)據(jù),列表如下:

機器轉(zhuǎn)速(轉(zhuǎn)/分)

189

193

190

185

183

202

187

203

192

201

零件使用時間(月)

43

33

39

37

38

37

38

35

38

35

機器轉(zhuǎn)速(轉(zhuǎn)/分)

193

197

191

186

191

188

185

204

201

189

零件使用時間(月)

37

40

41

37

35

37

42

36

34

40

(Ⅰ)若“轉(zhuǎn)速大于200轉(zhuǎn)/分”為“高速”,“轉(zhuǎn)速不大于200轉(zhuǎn)/分”為“非高速”,“使用時間大于36個月”的為“長壽命”,“使用時間不大于36個月”的為“非長壽命”,請根據(jù)上表數(shù)據(jù)完成下面的列聯(lián)表:

高速

非高速

合計

長壽命

非長壽命

合計

(Ⅱ)根據(jù)(Ⅰ)中的列聯(lián)表,試運用獨立性檢驗的思想方法:能否在犯錯誤的概率不超過0.01的前提下認為零件使用壽命的長短與轉(zhuǎn)速高低之間的關系.

參考公式:,其中.

參考數(shù)據(jù):

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

【答案】(Ⅰ)列聯(lián)表見解析.

(Ⅱ)在犯錯誤的概率不超過0.01的前提下可以認為零件使用壽命的長短與轉(zhuǎn)速高低之間有關系.

【解析】分析:()根據(jù)所給數(shù)據(jù),完成列聯(lián)表;

(Ⅱ)利用公式求得,與臨界值比較,即可得到結(jié)論.

詳解:解:(Ⅰ)“轉(zhuǎn)速大于200轉(zhuǎn)/高速”,“轉(zhuǎn)速不大于200轉(zhuǎn)/非高速”,“使用時間大于36個月的為長壽命”,“使用時間不大于36個月的為非長壽命,統(tǒng)計出數(shù)據(jù)列聯(lián)表為:

高速

非高速

合計

長壽命

1

13

14

非長壽命

4

2

6

合計

5

15

20

(Ⅱ)根據(jù)上述列聯(lián)表可以求得的觀測值:

,

,

∴在犯錯誤的概率不超過0.01的前提下可以認為零件使用壽命的長短與轉(zhuǎn)速高低之間有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)fx)=2cos2xcos2x).

1)求fx)的周期和最大值;

2)已知△ABC中,角A.B.C的對邊分別為A,B,C,若fπA)=,b+c2,求a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,定義域為上的函數(shù)是由一條射線及拋物線的一部分組成.利用該圖提供的信息解決下面幾個問題.

1)求的解析式;

2)若關于的方程有三個不同解,求的取值范圍;

3)若,求的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】6本不同的書:(1)全部借給5,每人至少1,共有多少種不同的借法?(2)全部借給3,每人至少1,共有多少種不同的借法?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù). 為實數(shù),且,記由所有組成的數(shù)集為.

1)已知,求

2)對任意的,恒成立,求的取值范圍;

3)若,,判斷數(shù)集中是否存在最大的項?若存在,求出最大項;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=ln(x+1)+ +ax+b(a,b∈R,a,b為常數(shù)),曲線y=f(x)與直線y= x在(0,0)點相切.
(1)求a,b的值;
(2)證明:當0<x<2時,f(x)<

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,假命題為(
A.存在四邊相等的四邊形不是正方形
B.z1 , z2∈C,z1+z2為實數(shù)的充分必要條件是z1 , z2互為共軛復數(shù)
C.若x,y∈R,且x+y>2,則x,y至少有一個大于1
D.對于任意n∈N* , + +…+ 都是偶數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校倡導為特困學生募捐,要求在自動購水機處每購買一瓶礦泉水,便自覺向捐款箱中至少投入一元錢.現(xiàn)統(tǒng)計了連續(xù)5天的售出礦泉水箱數(shù)和收入情況,列表如下:

售出水量(單位:箱)

7

6

6

5

6

收入(單位:元)

165

142

148

125

150

學校計劃將捐款以獎學金的形式獎勵給品學兼優(yōu)的特困生,規(guī)定:特困生綜合考核前20名,獲一等獎學金500元;綜合考核21-50名,獲二等獎學金300元;綜合考核50名以后的不獲得獎學金.

(1)若成線性相關,則某天售出9箱水時,預計收入為多少元?

(2)甲乙兩名學生獲一等獎學金的概率均為,獲二等獎學金的概率均為,不獲得獎學金的概率均為,已知甲乙兩名學生獲得哪個等級的獎學金相互獨立,求甲乙兩名學生所獲得獎學金之和的分布列及數(shù)學期望;

附:回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設ξ為隨機變量,從棱長為1的正方體的12條棱中任取兩條,當兩條棱相交時,ξ=0;當兩條棱平行時,ξ的值為兩條棱之間的距離;當兩條棱異面時,ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其數(shù)學期望E(ξ).

查看答案和解析>>

同步練習冊答案