9.有下列關(guān)系:其中有相關(guān)關(guān)系的是(  )
①人的年齡與他(她)擁有的財(cái)富之間的關(guān)系;
②曲線上的點(diǎn)與該點(diǎn)的坐標(biāo)之間的關(guān)系;
③蘋果的產(chǎn)量與氣候之間的關(guān)系;
④森林中的同一種樹木,其橫斷面直徑與高度之間的關(guān)系.
A.①②③B.①②C.①③④D.②③

分析 根據(jù)題意,結(jié)合相關(guān)關(guān)系的定義,依次分析題目所給四個(gè)關(guān)系是否符合相關(guān)關(guān)系的定義,即可得答案.

解答 解:根據(jù)題意,相關(guān)關(guān)系是一種不確定的關(guān)系,是非隨機(jī)變量與隨機(jī)變量之間的關(guān)系,
分析可得:①③④是相關(guān)關(guān)系,②是函數(shù)關(guān)系;
故選:C.

點(diǎn)評(píng) 本題考查變量相關(guān)關(guān)系的判定,注意區(qū)分相關(guān)關(guān)系與函數(shù)關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.若(2x-1)7=a7x7+a6x6+…+a1x+a0,求:
(1)a0+a1+a2+…+a7
(2)7a7+6a6+…+a1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=$\frac{{2\sqrt{2}sin(x+\frac{π}{4})+4{x^2}-x}}{{2{x^2}+cosx}}$的最大值為M,最小值為N,則有( 。
A.M-N=4B.M-N=0C.M+N=4D.M+N=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)$f(x)=\sqrt{3}cos3x-sin3x$,則f(x)的最小正周期為(  )
A.πB.C.$\frac{3π}{2}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為了得到$y=cos({\frac{1}{2}x+\frac{π}{6}})$的圖象,只需將y=cos$\frac{1}{2}$x的圖象( 。
A.向左平移$\frac{π}{6}$個(gè)單位長(zhǎng)度B.向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度
C.向左平移$\frac{π}{3}$個(gè)單位長(zhǎng)度D.向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.記等差數(shù)列{an}的前n項(xiàng)和為Sn,利用倒序求和的方法,可將Sn表示成首項(xiàng)a1、末項(xiàng)an與項(xiàng)數(shù)n的一個(gè)關(guān)系式,即公式Sn=$\frac{n({a}_{1}+{a}_{2})}{2}$;類似地,記等比數(shù)列{bn}的前n項(xiàng)積為Tn,且bn>0(n∈N*),試類比等差數(shù)列求和的方法,可將Tn表示成首項(xiàng)b1、末項(xiàng)bn與項(xiàng)數(shù)n的一個(gè)關(guān)系式,即公式Tn=(  )
A.$\frac{n(_{1}+_{n})}{2}$B.$\frac{(_{1}+_{n})^{n}}{2}$C.$\root{n}{_{1}_{2}}$D.(b1bn)${\;}^{\frac{n}{2}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在△ABC中,已知a=1,b=$\sqrt{3}$,A=30°,則sinC的值為( 。
A.$\frac{1}{2}$或1B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.通過隨機(jī)詢問某書店110名讀者對(duì)莫言的作品是否滿意,得到如下的列聯(lián)表:
總計(jì)
滿意503080
不滿意102030
 總計(jì)6050110
(1)從這50名女讀者中按對(duì)莫言的作品是否滿意采取分層抽樣,抽取一個(gè)容量為5的樣本,則樣本中滿意與不滿意的女讀者各有多少名?
P(K2≥k00.050.0250.01
k03.8415.0246.635
(2)由以上列聯(lián)表,問有多大把握認(rèn)為“讀者性別與對(duì)莫言作品的滿意度”有關(guān)?${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知$\overrightarrow{a}$、$\overrightarrow$為兩個(gè)單位向量,則下列四個(gè)命題中正確的是( 。
A.$\overrightarrow{a}$=$\overrightarrow$B.若$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow{a}$=$\overrightarrow$C.$\overrightarrow{a}$=$\overrightarrow$或$\overrightarrow{a}$=-$\overrightarrow$D.若$\overrightarrow{a}$=$\overrightarrow$,$\overrightarrow$=$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$

查看答案和解析>>

同步練習(xí)冊(cè)答案