【題目】已知函數(shù)f(x)=x3+3x對任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,則x∈ .
【答案】(﹣2, )
【解析】解:由題意得,函數(shù)的定義域是R,
且f(﹣x)=(﹣x)3+3(﹣x)=﹣(x3+3x)=﹣f(x),
所以f(x)是奇函數(shù),
又f'(x)=3x2+3>0,所以f(x)在R上單調(diào)遞增,
所以f(mx﹣2)+f(x)<0可化為:f(mx﹣2)<﹣f(x)=f(﹣x),
由f(x)遞增知:mx﹣2<﹣x,即mx+x﹣2<0,
則對任意的m∈[﹣2,2],f(mx﹣2)+f(x)<0恒成立,
等價于對任意的m∈[﹣2,2],mx+x﹣2<0恒成立,
所以 ,解得﹣2<x< ,
即x的取值范圍是(﹣2, ),
所以答案是:(﹣2, ).
【考點精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識,掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,a、b、c分別為角ABC所對的邊,且 acosC=csinA.
(1)求角C的大小.
(2)若c=2 ,且△ABC的面積為6 ,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四面體ABCD中,二面角A﹣BC﹣D為60°,點P為直線BC上一動點,記直線PA與平面BCD所成的角為θ,則( )
A.θ的最大值為60°
B.θ的最小值為60°
C.θ的最大值為30°
D.θ的最小值為30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A、B、C是拋物線y2=2px(p>0)上三個不同的點,且AB⊥AC.
(Ⅰ)若A(1,2),B(4,﹣4),求點C的坐標(biāo);
(Ⅱ)若拋物線上存在點D,使得線段AD總被直線BC平分,求點A的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2.
(1)求證:AB⊥PC;
(2)在線段PD上,是否存在一點M,使得二面角M﹣AC﹣D的大小為45°,如果存在,求BM與平面MAC所成角的正弦值,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠為了解用電量y與氣溫x℃之間的關(guān)系,隨機(jī)統(tǒng)計了5天的用電量與當(dāng)天氣溫,得到如下統(tǒng)計表:
曰期 | 8月1曰 | 8月7日 | 8月14日 | 8月18日 | 8月25日 |
平均氣溫(℃) | 33 | 30 | 32 | 30 | 25 |
用電量(萬度) | 38 | 35 | 41 | 36 | 30 |
xiyi=5446, xi2=4538, = , = ﹣
(1)請根據(jù)表中的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.據(jù)氣象預(yù)報9月3日的平均氣溫是 23℃,請預(yù)測9月3日的用電量;(結(jié)果保留整數(shù))
(2)請從表中任選兩天,記用電量(萬度)超過35的天數(shù)為ξ,求ξ的概率分布列,并求其數(shù)學(xué)期望和方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程是 (α為參數(shù)),以原點O為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=1.
(Ⅰ)分別寫出C1的極坐標(biāo)方程和C2的直角坐標(biāo)方程;
(Ⅱ)若射線l的極坐標(biāo)方程θ= (ρ≥0),且l分別交曲線C1、C2于A、B兩點,求|AB|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com