【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2S△ABC=·.
(1)求角B的大小;
(2)若b=2,求a+c的取值范圍.
【答案】見解析
【解析】解:(1)由已知得acsin B=accos B,∴tan B=,
∵0<B<π,∴B=.
(2)法一:由余弦定理得4=a2+c2-2accos ,即4=(a+c)2-3ac≥(a+c)2-32(當(dāng)且僅當(dāng)a=c時(shí)取等號),解得0<a+c≤4.
又a+c>b,∴2<a+c≤4,∴a+c的取值范圍是(2,4].
法二:由正弦定理得a=sin A,c=sin C,
又A+C=,∴a+c= (sin A+sin C)= [sin A+sin(A+B)]=
=4=4sin.
∵0<A<,∴<A+<,∴<sin≤1,∴a+c的取值范圍是(2,4].
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3+x2+x(0<a<1,x∈R).若對于任意的三個(gè)實(shí)數(shù)x1,x2,x3∈[1,2],都有f(x1)+f(x2)>f(x3)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(),將的圖象向左平移個(gè)單位長度后得到的圖象,且在區(qū)間內(nèi)的最大值為.
(1)求實(shí)數(shù)的值;
(2)在中,內(nèi)角, , 的對邊分別是, , ,若,且,求的周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的廣告費(fèi)支出與銷售額(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):
(1)求回歸直線方程;
(2)試預(yù)測廣告費(fèi)支出為萬元時(shí),銷售額多大?
(3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測值與實(shí)際值之差的絕對值不超過的概率.(參考數(shù)據(jù): .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究“教學(xué)方式”對教學(xué)質(zhì)量的影響,某高中老師分別用兩種不同的教學(xué)方式對入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).以下莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績.
(1)現(xiàn)從甲班數(shù)學(xué)成績不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績不低于75分的為優(yōu)秀,請?zhí)顚懴旅娴?/span>列聯(lián)表,并判斷有多大把握認(rèn)為“成績優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 | 乙班 | 合計(jì) | |
優(yōu)秀 | |||
不優(yōu)秀 | |||
合計(jì) |
下面臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
span>2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足
|x-3|≤1 .
(1)若且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)接到生產(chǎn)3000臺某產(chǎn)品的A,B,C三種部件的訂單,每臺產(chǎn)品需要這三種部件的數(shù)量分別為2,2,1(單位:件).已知每個(gè)工人每天可生產(chǎn)A部件6件,或B部件3件,或C部件2件.該企業(yè)計(jì)劃安排200名工人分成三組分別生產(chǎn)這三種部件,生產(chǎn)B部件的人數(shù)與生產(chǎn)A部件的人數(shù)成正比,比例系數(shù)為k(k為正整數(shù)).
(1)設(shè)生產(chǎn)A部件的人數(shù)為x,分別寫出完成A,B,C三種部件生產(chǎn)需要的時(shí)間;
(2)假設(shè)這三種部件的生產(chǎn)同時(shí)開工,試確定正整數(shù)k的值,使完成訂單任務(wù)的時(shí)間最短,并給出時(shí)間最短時(shí)具體的人數(shù)分組方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一鮮花店一個(gè)月(30天)某種鮮花的日銷售量與銷售天數(shù)統(tǒng)計(jì)如下:
日銷售量(枝) | 0~49 | 50~99 | 100~149 | 150~199 | 200~250 |
銷售天數(shù)(天) | 3天 | 3天 | 15天 | 6天 | 3天 |
將日銷售量落入各組區(qū)間的頻率視為概率.
(1)試求這30天中日銷售量低于100枝的概率;
(2)若此花店在日銷售量低于100枝的6天中選擇2天作促銷活動,求這2天的日銷售量都低于50枝的概率(不需要枚舉基本事件).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長均相等的正三棱柱ABCA1B1C1中,D為BB1的中點(diǎn),F(xiàn)在AC1上,且DF⊥AC1,則下述結(jié)論:
①AC1⊥BC;
②AF=FC1;
③平面DAC1⊥平面ACC1A1,其中正確的個(gè)數(shù)為( )
A.0 B.1
C.2 D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com