【題目】甲廠以千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),每小時可獲得利潤是元.
(1)要使生產(chǎn)該產(chǎn)品小時獲得的利潤不低于元,求的取值范圍;
(2)要使生產(chǎn)千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.
【答案】(1)3≤x≤10(2)甲廠以6千克/小時的速度生產(chǎn)可使利潤最大,最大利潤為610000元
【解析】
(1)根據(jù)題意,列不等式求出x的范圍即可;
(2)設(shè)總利潤為y,得出y關(guān)于x的函數(shù)解析式,配方得出最大值即可.
(1)由題意可得:200(5x+1)≥3000,
即5x14,解得x≥3,又1≤x≤10,
∴3≤x≤10.
(2)設(shè)生產(chǎn)1200千克產(chǎn)品的利潤為y,
則y=100(5x+1)120000(5)=120000[﹣3()2],
∴當即x=6時,y取得最大值610000.
故甲廠以6千克/小時的速度生產(chǎn)可使利潤最大,最大利潤為610000元.
科目:高中數(shù)學 來源: 題型:
【題目】某高中非畢業(yè)班學生人數(shù)分布情況如下表,為了了解這2000個學生的體重情況,從中隨機抽取160個學生并測量其體重數(shù)據(jù),根據(jù)測量數(shù)據(jù)制作了下圖所示的頻率分布直方圖.
(1)為了使抽取的160個樣品更具代表性,宜采取分層抽樣,請你給出一個你認為合適的分層抽樣方案,并確定每層應(yīng)抽取的樣品個數(shù);
(2)根據(jù)頻率分布直方圖,求的值,并估計全體非畢業(yè)班學生中體重在內(nèi)的人數(shù);
(3)已知高一全體學生的平均體重為,高二全體學生的平均體重為,試估計全體非畢業(yè)班學生的平均體重.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若f (x)在區(qū)間(-∞,2)上為單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(2)若a=0,x0<1,設(shè)直線y=g(x)為函數(shù)f (x)的圖象在x=x0處的切線,求證:f (x)≤g(x).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年某開發(fā)區(qū)一家汽車生產(chǎn)企業(yè)計劃引進一批新能源汽車制造設(shè)備,通過市場分析,全年需投入固定成本3000萬元,每生產(chǎn)x(百輛),需另投入成本萬元,且,由市場調(diào)研知,每輛車售價6萬元,且全年內(nèi)生產(chǎn)的車輛當年能全部銷售完.
(1)求出2019年的利潤(萬元)關(guān)于年產(chǎn)量x(百輛)的函數(shù)關(guān)系式;(利潤=銷售額成本)
(2)2019年產(chǎn)量為多少(百輛)時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:,其離心率為,以原點為圓心,橢圓的短軸長為直徑的圓被直線截得的弦長等于.
(1)求橢圓的方程;
(2)設(shè)為橢圓的左頂點,過點的直線與橢圓的另一個交點為,與軸相交于點,過原點與平行的直線與橢圓相交于兩點,問是否存在常數(shù),使恒成立?若存在,求出;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),將曲線上各點的橫坐標都縮短為原來的倍,縱坐標坐標都伸長為原來的倍,得到曲線,在極坐標系(與直角坐標系取相同的單位長度,且以原點為極點,以軸非負半軸為極軸)中,直線的極坐標方程為.
(1)求直線和曲線的直角坐標方程;
(2)設(shè)點是曲線上的一個動點,求它到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè), 滿足約束條件,則的最大值為_______.
【答案】4
【解析】,畫出可行域如下圖所示,由圖可知,目標函數(shù)在點處取得最大值為.
[點睛]本小題主要考查線性規(guī)劃的基本問題,考查了指數(shù)的運算. 畫二元一次不等式或表示的平面區(qū)域的基本步驟:①畫出直線(有等號畫實線,無等號畫虛線);②當時,取原點作為特殊點,判斷原點所在的平面區(qū)域;當時,另取一特殊點判斷;③確定要畫不等式所表示的平面區(qū)域.
【題型】填空題
【結(jié)束】
14
【題目】已知數(shù)列的前項和公式為,若,則數(shù)列的前項和__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當時, ;當時, .
【解析】【試題分析】(I)利用的二階導數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.
【試題解析】
(Ⅰ),
設(shè) ,則.
∵, ,∴在上單調(diào)遞增,
從而得在上單調(diào)遞增,又∵,
∴當時, ,當時, ,
因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,
由此可知.
∵, ,
∴.
設(shè),
則 .
∵當時, ,∴在上單調(diào)遞增.
又∵,∴當時, ;當時, .
①當時, ,即,這時, ;
②當時, ,即,這時, .
綜上, 在上的最大值為:當時, ;
當時, .
[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;
( Ⅱ ) 設(shè)直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某人在微信群中發(fā)了一個8元“拼手氣”紅包,被甲、乙、丙三人搶完,若三人均領(lǐng)到整數(shù)元,且每人至少領(lǐng)到1元,則甲領(lǐng)到的錢數(shù)不少于其他任何人的概率為
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com