在平面直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐V標方程為,M,N分別為曲線C與x軸、y軸的交點.
(1)寫出曲線C的直角坐標方程,并求M,N的極坐標;
(2)求直線OM的極坐標方程.

(1)點M的極坐標為(2,0),點N的極坐標為;(2) ,ρ∈R.

解析試題分析:(1)先利用三角函數(shù)的差角公式展開曲線C的極坐標方程的左式,再利用直角坐標與極坐標間的關系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得.(2)先在直角坐標系中算出點M的直角坐標為(2,0),再利用直角坐標與極坐標間的關系求出其極坐標和直線OM極坐標方程即可.
解:(1)由,
ρcos θ+ρsin θ=1,
∴曲線C的直角坐標方程為,
即x+-2=0.
當θ=0時,ρ=2,∴點M的極坐標為(2,0);
時,,∴點N的極坐標為
(2)由(1)得,點M的直角坐標為(2,0),點N的直角坐標為
直線OM的極坐標方程為,ρ∈R.
考點:1.極坐標和直角坐標的互化;2.曲線的極坐標方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知曲線: ,在極坐標系(與平面直角坐標系取相同的長度單位,且以原點為極點,以軸正半軸為極軸)中,直線的極坐標方程為.
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的倍、倍后得到曲線,試寫出直線的直角坐標方程和曲線的參數(shù)方程;
(2)在曲線上求一點,使點到直線的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,以為極點,軸非負半軸為極軸建立坐標系,已知曲線的極坐標方程為,直線的參數(shù)方程為: 為參數(shù)),兩曲線相交于兩點. 求:
(1)寫出曲線的直角坐標方程和直線的普通方程;
(2)若的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,半圓的極坐標方程為
(1)求得參數(shù)方程;
(2)設點上,處的切線與直線垂直,根據(jù)(1)中你得到的參數(shù)方程,確定的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線的直角坐標方程為. 以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系. P是曲線上一點,,,將點P繞點O逆時針旋轉角后得到點Q,,點M的軌跡是曲線.
(1)求曲線的極坐標方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,曲線C1的參數(shù)方程為  (a>b>0,為參數(shù)),以Ο為極點,x軸的正半軸為極軸建立極坐標系,曲線C2是圓心在極軸上且經過極點的圓,已知曲線C1上的點M 對應的參數(shù)= ,與曲線C2交于點D 
(1)求曲線C1,C2的方程;
(2)A(ρ1,θ),Β(ρ2,θ+)是曲線C1上的兩點,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,曲線的參數(shù)方程是:是參數(shù)).
(1)將曲線和曲線的方程轉化為普通方程;
(2)若曲線與曲線相交于兩點,求證
(3)設直線交于兩點,且為常數(shù)),過弦的中點作平行于軸的直線交曲線于點,求證:的面積是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知直線l的參數(shù)方程:(t為參數(shù))和圓C的極坐標方程:ρ=2sin(θ+),判斷直線和圓C的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在平面直角坐標系中,點的坐標為,點的坐標為,點到直線的距離為,且是直角三角形,則滿足條件的點        個. 

查看答案和解析>>

同步練習冊答案