設(shè)是各項(xiàng)都為正數(shù)的等比數(shù)列, 是等差數(shù)列,且,

(1)求數(shù)列,的通項(xiàng)公式;

(2)設(shè)數(shù)列的前項(xiàng)和為,求數(shù)列的前項(xiàng)和

 

【答案】

(1);(2)

【解析】

試題分析:(1)利用等差、等比數(shù)列的通項(xiàng)公式分別表示各項(xiàng),解方程組求解;(2)根據(jù)數(shù)列通項(xiàng)的特點(diǎn)先利用分組求和,再用乘公比錯(cuò)位相減法求和

試題解析:(1)設(shè)數(shù)列的公比為數(shù)列的公差為,

依題意得:,                     2分

消去,                  3分

  ∴,由可解得                  4分

                  5分

(2)由(1)得,所以有:

                  7分

①     則

①-②得:                10分

 

                  12分

,                  13分

.                   14分

考點(diǎn):1.等差、等比數(shù)列的通項(xiàng)公式、求和公式;2.分組求和法;3.乘公比錯(cuò)位相減法

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶一模)設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,2
Sn
是an+2 和an的等比中項(xiàng).
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明
1
S1
+
1
S2
+…+
1
Sn
<1;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿足n>m 的一切正整數(shù)n,不等式2Sn-4200>
an2
2
恒成立,求這樣的正整數(shù)m共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆重慶市七區(qū)高三第一次調(diào)研測(cè)試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)
設(shè)數(shù)列的各項(xiàng)都為正數(shù),其前項(xiàng)和為,已知對(duì)任意,的等比中項(xiàng).
(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)證明
(Ⅲ)設(shè)集合,,且,若存在,使對(duì)滿足的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市七區(qū)高三第一次調(diào)研測(cè)試數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)

設(shè)數(shù)列的各項(xiàng)都為正數(shù),其前項(xiàng)和為,已知對(duì)任意,的等比中項(xiàng).

(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

(Ⅱ)證明;

(Ⅲ)設(shè)集合,,且,若存在,使對(duì)滿足 的一切正整數(shù),不等式恒成立,求這樣的正整數(shù)共有多少個(gè)?

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省月考題 題型:解答題

設(shè)數(shù)列{an}的各項(xiàng)都為正數(shù),其前n項(xiàng)和為Sn,已知對(duì)任意n∈N*,2是an+2 和an的等比中項(xiàng).
(Ⅰ)證明數(shù)列{an}為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)證明++…+<1;
(Ⅲ)設(shè)集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使對(duì)滿足n>m 的一切正整數(shù)n,不等式2Sn﹣4200>恒成立,求這樣的正整數(shù)m共有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列的各項(xiàng)都為正數(shù),其前項(xiàng)和為,已知對(duì)任意的等比中項(xiàng).

(Ⅰ)證明數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;

(Ⅱ)證明;<1

查看答案和解析>>

同步練習(xí)冊(cè)答案