18.若直線2x+y+a=0與圓x2+y2+2x-4y=0相切,則a的值為( 。
A.±$\sqrt{5}$B.±5C.3D.±3

分析 求出圓的圓心與半徑,利用直線與圓相切,列出方程求解即可.

解答 解:圓的方程可化為(x+1)2+(y-2)2=5,因為直線與圓相切,所以有$\frac{|a|}{\sqrt{5}}$=$\sqrt{5}$,即a=±5.
故選:B.

點評 本題考查直線與圓的位置關(guān)系的應(yīng)用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖是甲、乙兩名籃球運動員每場比賽的得分情況的莖葉圖$\overline{{x}_{1}}$,$\overline{{x}_{2}}$分別表示甲乙兩名運動員每場比賽得分的平均數(shù),s1,s2分別表示甲乙兩名運動員每場比賽得分的標準差,則有( 。
A.$\overline{{x}_{1}}$<$\overline{{x}_{2}}$,s1>s2B.$\overline{{x}_{1}}$<$\overline{{x}_{2}}$,s1<s2C.$\overline{{x}_{1}}$>$\overline{{x}_{2}}$,s1<s2D.$\overline{{x}_{1}}$>$\overline{{x}_{2}}$,s1>s2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在△ABC中,B=60°,且c=8,b-a=4,則b=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知各項都為正數(shù)的等比數(shù)列{an}滿足$\frac{1}{2}$a3是3a1與2a2的等差中項,且a1a2=a3
( I)求數(shù)列{an}的通項公式;
( II)設(shè)bn=log3an,且Sn為數(shù)列{bn}的前n項和,求數(shù)列{${\frac{{1+2{S_n}}}{S_n}$}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知全集U=R,集合A={0,1,2,3,4,5},B={x∈R|x≥2},則圖中陰影部分所表示的集合為(  )
A.{0,1}B.{1}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若正實數(shù)x,y,z滿足x+y+z=1,則$\frac{1}{x+y}$+$\frac{x+y}{z}$的最小值是3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知命題p:?x∈R,3x<4x,命題q:?x∈R,x3=1-x2,則下列命題中為真命題的是( 。
A.p∧¬qB.¬p∧qC.¬p∧¬qD.p∧q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)y=$\sqrt{3-2x-{x^2}}$的定義域是( 。
A.[-3,1]B.[-1,3]C.[1,3]D.(-3,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知數(shù)列{an}滿足a1=1,a2=2,an+2=(1+cos2$\frac{nπ}{2}$)an+sin2$\frac{nπ}{2}$,則該數(shù)列的前10項和為( 。
A.89B.76C.77D.35

查看答案和解析>>

同步練習冊答案