已知正方形ABCD,E、F分別是AB、CD的中點,將△ADE沿DE折起,如圖所示,記二面角A-DE-C的大小為θ(0<θ<π).
(1)證明BF∥平面ADE;
(2)若△ACD為正三角形,試判斷點A在平面BC?DE內(nèi)的射影G是否在直線EF上,證明你的結(jié)論,并求角θ的余弦值.
(1)證明:E、F分別是正方體ABCD的邊AB、CD的中點.
∴EB∥FD,且EB=FD.
∴四邊形EBFD是平行四邊形.
∴BF∥ED.
∵ED平面AED,而BF平面AED.
∴BF∥平面AED.
(2)點A在平面BCDE內(nèi)的射影G在直線EF上.
過點A作AG⊥平面BCDE,垂足為G,連結(jié)GC、GD.
∵△ACD為正三角形.
∴AC=AD,∴GC=GD.
∴G在CD的垂直平分線上.
又∵EF是CD的垂直平分線,∴點A在平面BCDE內(nèi)的射影G在直線EF上.
過G作GH⊥ED.垂足為H.連結(jié)AH,則AH⊥DE,∴∠AHG是二面角A-DE-C的平面角.即∠AHG=θ.
設(shè)原正方形ABCD的邊長為2a,連結(jié)AF.
在折后圖的△AEF中,AF=a,EF=2AE=2a,
∴△AEF為直角三角形,AG·EF=AE·AF.
∴AG=.
在Rt△ADE中,AH·DE=AD·AE.
∴AH=.∴GH=.
∴cosθ=.
空間直線和平面
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com