在數(shù)列{an}中,a1=-60,an+1=an+3,則|a1|+|a2|+…+|a30|=(  )
分析:根據(jù)已知寫(xiě)出等差數(shù)列的通項(xiàng)公式,令an≥0,可得到n的范圍,結(jié)合絕對(duì)值的幾何意義及等差數(shù)列的求和公式即可求解
解答:解:{an}是等差數(shù)列,an=-60+3(n-1)=3n-63,
sn=
-60+3n-63
2
•n
=
n(3n-123)
2

由an≥0,解得n≥21.
∴|a1|+|a2|+|a3|+…+|a30|
=-(a1+a2+…+a20)+(a21+…+a30
=S30-2S20
=765
故選B
點(diǎn)評(píng):此題考查學(xué)生靈活運(yùn)用等差數(shù)列的通項(xiàng)公式及前n項(xiàng)和的公式化簡(jiǎn)求值,本題的突破點(diǎn)是令通項(xiàng)公式大于等于0找出此數(shù)列從第22項(xiàng)開(kāi)始變?yōu)檎龜?shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,
a
 
1
=1
,an=
1
2
an-1+1
(n≥2),則數(shù)列{an}的通項(xiàng)公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
an
n
}的前n項(xiàng)和為T(mén)n,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a=
12
,前n項(xiàng)和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=a,前n項(xiàng)和Sn構(gòu)成公比為q的等比數(shù)列,________________.

(先在橫線(xiàn)上填上一個(gè)結(jié)論,然后再解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{}的前n項(xiàng)和為T(mén)n,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案