如果實數(shù)x、y滿足條件
x-y+1≥0
y+1≥0
x+y+1≤0
,那么z=4x•2-y的最大值為(  )
A、1
B、2
C、
1
2
D、
1
4
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:由4x•2-y=22x-y,設m=2x-y,利用數(shù)形結合即可.
解答: 解:由4x•2-y=22x-y,
設m=2x-y,則y=2x-m,
作出不等式組對應的平面區(qū)域如圖,
平移直線y=2x-m,
由圖象可知當直線y=2x-m經(jīng)過點C(0,-1)時,直線yy=2x-m的截距最小,
此時m最大.將C的坐標代入目標函數(shù)m=2x-y=1,
此時z=4x•2-y=22x-y最大值為2,
故選:B.
點評:本題主要考查線性規(guī)劃的應用,結合目標函數(shù)的幾何意義,利用數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且Sn=n2,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設bn=
1
anan+1
,n∈N*,求數(shù)列{bn}的前n項和Tn
(3)設An=(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)•…•(1+
1
an
),n∈N*,試比較An
an+1
的大小,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若非零向量
a
,
b
滿足|
a
|=3|
b
|=|
a
+2
b
|,則向量
a
,
b
夾角的正弦值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題中,為真命題的是(  )
A、?x∈[
π
2
,π],sinx-cosx≥2
B、?x∈R,x2<x3
C、?x∈(0,
π
2
),tanx>sinx
D、?x∈R,x2+x=-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知∠AOB=60°,在∠AOB內(nèi)隨機作一條射線OC,則∠AOC小于15°的概率為(  )
A、
1
4
B、
1
2
C、
3
4
D、
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設x,y滿足約束條件
x+y≥1
x-2y≥-2,則z=x+2y的最大值是
3x-2y≤3
( 。
A、6
B、
17
2
C、7
D、
29
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

π
2
cosxdx=( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b∈R,且a>0,b≠0,則a>
1
b
是“ab>1”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ex-ex的單調(diào)增區(qū)間為
 

查看答案和解析>>

同步練習冊答案