2.若x,y滿足約束條件$\left\{\begin{array}{l}{x-1≥0}\\{x-y≤0}\\{x+y-4≤0}\end{array}\right.$,則z=x+2y的最大值為( 。
A.3B.6C.7D.8

分析 作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過(guò)平移即可求z的最大值.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分).
由z=x+2y得y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
平移直線y=-$\frac{1}{2}$x+$\frac{1}{2}$z,
由圖象可知當(dāng)直線y=-$\frac{1}{2}$x+$\frac{1}{2}$z經(jīng)過(guò)點(diǎn)A時(shí),直線y=-$\frac{1}{2}$x+$\frac{1}{2}$z的截距最大,
此時(shí)z最大.
由$\left\{\begin{array}{l}{x+y-4=0}\\{x=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$,即A(1,3),
代入目標(biāo)函數(shù)z=x+2y得z=1+2×3=7
故選:C

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用圖象平行可以求目標(biāo)函數(shù)的最大值和最小值,利用數(shù)形結(jié)合是解決線性規(guī)劃問(wèn)題中的基本方法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知兩平行直線4x-2y+7=0,2x-y+1=0之間的距離等于坐標(biāo)原點(diǎn)O到直線l:x-2y+m=0(m>0)的距離的一半.
(1)求m的值;
(2)判斷直線l與圓C:x2+(y-2)2=$\frac{1}{5}$的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若函數(shù)f(x)=2•ax-b+1(a>0且a≠1)的圖象經(jīng)過(guò)定點(diǎn)(2,3),則b的值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.計(jì)算:(0.0081)${\;}^{-\frac{1}{4}}}$-10×0.027${\;}^{\frac{1}{3}}}$+lg$\frac{1}{4}$-lg25( 。
A.-$\frac{10}{3}$B.$\frac{25}{3}$C.-$\frac{5}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)y=-x2+2x+3(0≤x<3)的值域是(0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)向量$\overrightarrow{α}$=(1,cos2θ-sin2θ),$\overrightarrow$=(2,1),$\overrightarrow{c}$=($4cos(\frac{π}{2}-θ)$,1),$\overrightarrowggpm2hu$=($\frac{1}{2}cos(\frac{3π}{2}+θ),1$)其中$θ∈(0,\frac{π}{4})$.
(1)求$\overrightarrow{α}•\overrightarrow-\overrightarrow{c}•\overrightarrowhceia2j$的取值范圍.
(2)若函數(shù)f(x)=|x-1|,比較f($\overrightarrow{α}•\overrightarrow$)與f($\overrightarrow{c}•\overrightarrowcn7wq7j$)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等比數(shù)列{an}單調(diào)遞增,記數(shù)列{an}的前n項(xiàng)之和為Sn,且滿足條件a2=6,S3=26.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an-2n,求數(shù)列{bn}的前n項(xiàng)之和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(Ⅰ) 已知lg2=a,lg3=b,試用a,b表示log1615;
(Ⅱ)若a>0,b>0,化簡(jiǎn) $\frac{{(2{a^{\frac{2}{3}}}{b^{\frac{1}{2}}})(-6{a^{\frac{1}{2}}}{b^{-\;\frac{1}{3}}})}}{{-3\root{6}{ab}}}-(4a-1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若-1<x<1,則y=$\frac{x}{x-1}$+x的最大值為0.

查看答案和解析>>

同步練習(xí)冊(cè)答案