如圖所示,在半徑為2cm⊙O內(nèi)有長(zhǎng)為cm的弦AB,則此弦所對(duì)的圓心角∠AOB

[  ]

A60°

B90°

C120°

D150°

答案:C
解析:

解:如圖所示,作OC⊥ABC,則.在Rt△BOC中,因?yàn)?/FONT>(cm),所以.所以∠B=30°.所以∠BOC=60°.所以∠AOB=120°.C


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

22、如圖所示,在Rt△ABCD中,∠ACB=90°,點(diǎn)O為三角形外的一點(diǎn),以O(shè)為圓心,OC為半徑的圓與邊AB相切,切點(diǎn)為E,圓O與邊BC相交于D點(diǎn),直徑EF與邊BC交于G點(diǎn),連接AC.
(1)求證:A、E、G、C四點(diǎn)共圓;
(2)求證:AG∥ED.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)通常用a、b、c表示△ABC的三個(gè)內(nèi)角∠A、∠B、∠C所對(duì)邊的邊長(zhǎng),R表示△ABC外接圓半徑.
(1)如圖所示,在以O(shè)為圓心,半徑為2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的長(zhǎng);
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2;
(3)給定三個(gè)正實(shí)數(shù)a、b、R,其中b≤a,問(wèn):a、b、R滿足怎樣的關(guān)系時(shí),以a、b為邊長(zhǎng),R為外接圓半徑的△ABC不存在,存在一個(gè)或兩個(gè)(全等的三角形算作同一個(gè))?在△ABC存在的情況下,用a、b、R表示c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,在同心圓中,兩圓的半徑分別為2,1,∠AOB=120°,則陰影部分的面積是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年上海市春季高考數(shù)學(xué)試卷(解析版) 題型:解答題

通常用a、b、c表示△ABC的三個(gè)內(nèi)角∠A、∠B、∠C所對(duì)邊的邊長(zhǎng),R表示△ABC外接圓半徑.
(1)如圖所示,在以O(shè)為圓心,半徑為2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB的長(zhǎng);
(2)在△ABC中,若∠C是鈍角,求證:a2+b2<4R2;
(3)給定三個(gè)正實(shí)數(shù)a、b、R,其中b≤a,問(wèn):a、b、R滿足怎樣的關(guān)系時(shí),以a、b為邊長(zhǎng),R為外接圓半徑的△ABC不存在,存在一個(gè)或兩個(gè)(全等的三角形算作同一個(gè))?在△ABC存在的情況下,用a、b、R表示c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年?yáng)|北三校高三第三次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖所示,在Rt△ABCD中,∠ACB=90°,點(diǎn)O為三角形外的一點(diǎn),以O(shè)為圓心,OC為半徑的圓與邊AB相切,切點(diǎn)為E,圓O與邊BC相交于D點(diǎn),直徑EF與邊BC交于G點(diǎn),連接AC.
(1)求證:A、E、G、C四點(diǎn)共圓;
(2)求證:AG∥ED.

查看答案和解析>>

同步練習(xí)冊(cè)答案