在數(shù)列{an}中,a1=
2
3
,且滿足an=
3an-1
3+2an-1
(n≥2),則an=
6
4n+5
6
4n+5
分析:利用“取倒數(shù)法”和等差數(shù)列的通項(xiàng)公式即可得出.
解答:解:∵a1=
2
3
,且滿足an=
3an-1
3+2an-1
(n≥2),∴
1
an
=
1
an-1
+
2
3
,即
1
an
-
1
an-1
=
2
3

∴數(shù)列{
1
an
}是以
1
a1
=
3
2
為首項(xiàng),
2
3
為公差的等差數(shù)列;
1
an
=
3
2
+(n-1)•
2
3
=
4n+5
6

an=
6
4n+5

故答案為
6
4n+5
點(diǎn)評(píng):熟練掌握取“取倒數(shù)法”和等差數(shù)列的通項(xiàng)公式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,
a
 
1
=1
,an=
1
2
an-1+1
(n≥2),則數(shù)列{an}的通項(xiàng)公式為an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a 1=
1
3
,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{
an
n
}的前n項(xiàng)和為Tn,證明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a=
12
,前n項(xiàng)和Sn=n2an,求an+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=a,前n項(xiàng)和Sn構(gòu)成公比為q的等比數(shù)列,________________.

(先在橫線上填上一個(gè)結(jié)論,然后再解答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市碣石中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

在數(shù)列{an}中,a,并且對(duì)任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{}的前n項(xiàng)和為Tn,證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案