【題目】合肥一中、六中為了加強(qiáng)交流,增進(jìn)友誼,兩校準(zhǔn)備舉行一場(chǎng)足球賽,由合肥一中版畫(huà)社的同學(xué)設(shè)計(jì)一幅矩形宣傳畫(huà),要求畫(huà)面面積為,畫(huà)面的上、下各留空白,左、右各留空白.
(1)如何設(shè)計(jì)畫(huà)面的高與寬的尺寸,才能使宣傳畫(huà)所用紙張面積最小?
(2)設(shè)畫(huà)面的高與寬的比為,且,求為何值時(shí),宣傳畫(huà)所用紙張面積最小?
【答案】(1)畫(huà)面的高,寬時(shí)所用紙張面積最。唬2).
【解析】
(1)設(shè)畫(huà)面高為,寬為,紙張面積為,可得到,利用基本不等式可求得最小值,同時(shí)確定當(dāng)時(shí)取最小值,從而得到結(jié)果;(2)畫(huà)面高為,寬為,則,根據(jù)的范圍可知,根據(jù)(1)中的表達(dá)式,結(jié)合對(duì)號(hào)函數(shù)圖象可知時(shí)取最小值,從而得到結(jié)果.
(1)設(shè)畫(huà)面高為,寬為,紙張面積為
則
當(dāng)且僅當(dāng),即時(shí)取等號(hào)
即畫(huà)面的高為,寬為時(shí)所用紙張面積最小,最小值為:.
(2)設(shè)畫(huà)面高為,寬為,則
,又
由(1)知:
由對(duì)號(hào)函數(shù)性質(zhì)可知:在上單調(diào)遞減
,即時(shí),所用紙張面積最小
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,為等邊三角形, ,點(diǎn)為邊的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求證:平面平面;
(Ⅲ)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若集合A={x|2<x<3},B={x|(x+2)(x﹣a)<0},則“a=1”是“A∩B=”的____條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某科研課題組通過(guò)一款手機(jī)APP軟件,調(diào)查了某市1000名跑步愛(ài)好者平均每周的跑步量(簡(jiǎn)稱(chēng)“周跑量”),得到如下的頻數(shù)分布表
周跑量(km/周) | |||||||||
人數(shù) | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答題卡上補(bǔ)全該市1000名跑步愛(ài)好者周跑量的頻率分布直方圖:
注:請(qǐng)先用鉛筆畫(huà),確定后再用黑色水筆描黑
(2)根據(jù)以上圖表數(shù)據(jù)計(jì)算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計(jì)該市跑步愛(ài)好者周跑量的分布特點(diǎn)
(3)根據(jù)跑步愛(ài)好者的周跑量,將跑步愛(ài)好者分成以下三類(lèi),不同類(lèi)別的跑者購(gòu)買(mǎi)的裝備的價(jià)格不一樣,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
類(lèi)別 | 休閑跑者 | 核心跑者 | 精英跑者 |
裝備價(jià)格(單位:元) | 2500 | 4000 | 4500 |
根據(jù)以上數(shù)據(jù),估計(jì)該市每位跑步愛(ài)好者購(gòu)買(mǎi)裝備,平均需要花費(fèi)多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(1)當(dāng)時(shí),求的最小值;
(2)設(shè)函數(shù)恰有兩個(gè)零點(diǎn),且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、F分別是橢圓C: + =1(a>b>0)的左頂點(diǎn)、右焦點(diǎn),點(diǎn)P為橢圓C上一動(dòng)點(diǎn),當(dāng)PF⊥x軸時(shí),AF=2PF.
(1)求橢圓C的離心率;
(2)若橢圓C存在點(diǎn)Q,使得四邊形AOPQ是平行四邊形(點(diǎn)P在第一象限),求直線(xiàn)AP與OQ的斜率之積;
(3)記圓O:x2+y2= 為橢圓C的“關(guān)聯(lián)圓”.若b= ,過(guò)點(diǎn)P作橢圓C的“關(guān)聯(lián)圓”的兩條切線(xiàn),切點(diǎn)為M、N,直線(xiàn)MN的橫、縱截距分別為m、n,求證: + 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù),則下列說(shuō)法不正確的是( )
A.其圖象開(kāi)口向上,且始終與軸有兩個(gè)不同的交點(diǎn)
B.無(wú)論取何實(shí)數(shù),其圖象始終過(guò)定點(diǎn)
C.其圖象對(duì)稱(chēng)軸的位置沒(méi)有確定,但其形狀不會(huì)因的取值不同而改變
D.函數(shù)的最小值大于
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一元二次函數(shù)的最大值為,其圖象的對(duì)稱(chēng)軸為,且與軸兩個(gè)交點(diǎn)的橫坐標(biāo)的平方和為.
(1)求該一元二次函數(shù);
(2)要將該函數(shù)圖象的頂點(diǎn)平移到原點(diǎn),請(qǐng)說(shuō)出平移的方式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】橢圓的左右焦點(diǎn)分別為,與軸正半軸交于點(diǎn),若為等腰直角三角形,且直線(xiàn)被圓所截得的弦長(zhǎng)為2.
(1)求橢圓的方程;
(2)直線(xiàn):與橢圓交于點(diǎn),線(xiàn)段的中點(diǎn)為,射線(xiàn)與橢圓交于點(diǎn),點(diǎn)為的重心,求證:的面積為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com