精英家教網 > 高中數學 > 題目詳情
兩平行直線x+y+2=0與2x+2y-5=0的距離為
 
考點:兩條平行直線間的距離,直線的一般式方程與直線的平行關系
專題:直線與圓
分析:利用平行線之間的距離公式進行求解即可.
解答: 解:由x+y+2=0得2x+2y+4=0,
則兩平行直線的距離d=
|-5-4|
22+22
=
9
8
=
9
2
4
,
故答案為:
9
2
4
點評:本題主要考查平行直線的距離,利用平行直線間的距離公式是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設全集U={1,2,3,4},集合A={1,2,3},則∁UA=( 。
A、{1,2,3,4}
B、{1,2}
C、{4}
D、{1,2,4}

查看答案和解析>>

科目:高中數學 來源: 題型:

已知在平面直角坐標系xOy中,圓C的方程為x2+y2=-2y+3,直線l過點(1,0)且與直線x-y+1=0垂直.若直線l與圓C交于A、B兩點,則△OAB的面積為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

正方形ABCD的邊長為2,點E、F分別在邊AB、BC上,且AE=1,BF=
1
2
,將此正方形沿DE、DF折起,使點A、C重合于點P,則三棱錐P-DEF的體積是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

當a∈[-1,1]時,f(x)=alg2x+4>0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

若θ∈[-
3
,
π
6
],試確定cosθ的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

△ABC的頂點A固定,點A的對邊BC的長是2a,邊BC上的高為b,邊BC沿一條定直線移動,求△ABC外心的軌跡方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C的方程是x2+y2-4x+F=0,且圓C與直線y=x+1相切,那么F=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|
1
2
≤2x≤2},B={x|x≥a}.
(1)若a=0時.求A∩B,A∪B;
(2)若A⊆B,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案