直線3x+4y=5與圓(x-1)2+(y+2)2=5的位置關(guān)系是( 。
A、外離B、外切C、相交D、內(nèi)切
考點(diǎn):直線與圓的位置關(guān)系
專題:直線與圓
分析:先利用點(diǎn)到直線的距離公式求出圓心到直線的距離d,然后與圓的半徑r比較大小即可判斷出直線與圓的位置關(guān)系.
解答: 解:由圓(x-1)2+(y+2)2=5可知,圓心(1,-2),半徑r=
5
,
∵圓心(1,-2)到直線3x+4y=5的距離d=
|3-8-5}
32+42
=2<
5
=r
∴直線與圓相交.
故選:C.
點(diǎn)評(píng):此題要求學(xué)生掌握直線與圓的位置關(guān)系的判斷方法,靈活運(yùn)用點(diǎn)到直線的距離公式化簡(jiǎn)求值,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從1、2、3、4、5、6、7中任意取出兩個(gè)不同的數(shù),其和為偶數(shù)的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在斜三棱柱ABC-A1B1C1中,A0,B0分別為側(cè)棱AA1,BB1上的點(diǎn),且知BB0=A0A1,過(guò)A0,B0,C1的截面將三棱柱分成上下兩個(gè)部分體積之比為( 。
A、2:1B、4:3
C、3:2D、1:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于二項(xiàng)式(x-1)23有下列命題:
①該二項(xiàng)展開(kāi)式中非常數(shù)項(xiàng)的系數(shù)和是1;
②該二項(xiàng)展開(kāi)式中第六項(xiàng)為
C
6
23
x6;
③該二項(xiàng)展開(kāi)式中系數(shù)最大的項(xiàng)是第13項(xiàng);
④當(dāng)x=24時(shí),(x-1)23除以24的余數(shù)是23.
其中正確命題有( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)E在線段BB1和線段A1B1上移動(dòng),∠EAB=θ,θ∈(0,
π
2
),過(guò)直線AE,AD的平面ADFE將正方體分成兩部分,記棱BC所在部分的體積為V(θ),則函數(shù)V=V(θ),θ∈(0,
π
2
)的大致圖象是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從4部甲型和5部乙型手機(jī)中任意取出3部,其中至少要有甲型與乙型手機(jī)各1部,則不同的取法共有( 。
A、35種B、70種
C、84種D、140種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=sinωx(ω>0)的圖象在y軸右邊的第一條對(duì)稱軸的方程x=1,則ω=( 。
A、
π
4
B、
π
2
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知一個(gè)空間幾何體的三視圖如圖所示,其中俯視圖是邊長(zhǎng)為6的正三角形,若這個(gè)空間幾何體存在唯一的一個(gè)內(nèi)切球(與該幾何體各個(gè)面都相切),則這個(gè)幾何體的全面積是( 。
A、18
3
B、36
3
C、45
3
D、54
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex+ax,g(x)=ax-lnx,其中a<0,e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)若g(x)在(1,g(1))處的切線l與直線x-3y-5=0垂直,求a的值;
(Ⅱ)求f(x)在x∈[0,2]上的最小值;
(Ⅲ)試探究能否存在區(qū)間M,使得f(x)和g(x)在區(qū)間M上具有相同的單調(diào)性?若能存在,說(shuō)明區(qū)間M的特點(diǎn),并指出f(x)和g(x)在區(qū)間M上的單調(diào)性;若不能存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案