在△ABC中,角A、B、C所對的邊分別為a、b、c,若acosB+bcosA=csinC且a=b,則角B等于(  )
A、30°B、45°
C、60°D、90°
考點:正弦定理
專題:計算題,解三角形
分析:利用正弦定理對已知等式化簡整理可求得sinC的值進(jìn)而求得C,然后根據(jù)a=b求得B.
解答: 解:∵acosB+bcosA=csinC,
∴sinAcosB+sinBcosA=sinC•sinC,
∴sin(A+B)=sinC=sinC•sinC,
∴sinC=1,
∴∠C=
π
2
,
∵a=b,
∴∠B=
π
4

故選:B.
點評:本題主要考查了正弦定理的運用.解題的關(guān)鍵是已知條件中邊轉(zhuǎn)化為角的正弦,利用三角函數(shù)的基礎(chǔ)知識解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a=2,A=30°,C=135°,則邊c=( 。
A、1
B、
2
C、2
2
D、2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{n(n+4)(
2
3
n}中的最大項是第k項,則k=(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin(-1560°)的值是( 。
A、-
3
2
B、-
1
2
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a=2,c=4,B=60°,則b等于( 。
A、2
3
B、12
C、2
7
D、28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的離心率e=
2
2
,長軸的左右端點分別為A1(-
2
,0),A2
2
,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)動直線l:y=kx+b與曲線C有且只有一個公共點P,且與直線x=2相交于點Q.問在x軸上是否存在定點N,使得以PQ為直徑的圓恒過定點N,若存在,求出N點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2x+2asinxcosx-1的圖象關(guān)于直線x=
π
8
對稱.
(Ⅰ)求a的值;
(Ⅱ)把函數(shù)y=f(x)的圖象向右平移k(k>0)個單位后與函數(shù)g(x)=
2
sin2x的圖象重合,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在無窮數(shù)列{an}中,a1=1,對于任意n∈N*,都有an∈N*,an<an+1.設(shè)m∈N*,記使得an≤m成立的n的最大值為bm
(Ⅰ)設(shè)數(shù)列{an}為1,3,5,7,…,寫出b1,b2,b3的值;
(Ⅱ)若{an}為等比數(shù)列,且a2=2,求b1+b2+b3+…+b50的值;
(Ⅲ)若{bn}為等差數(shù)列,求出所有可能的數(shù)列{an}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2x+2sin2x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案