在數(shù)列{an}中,a1=1,an+1=an+
an
+
1
4
,則a99=( 。
A、2550
1
4
B、2500
C、2450
1
4
D、2401
考點:數(shù)列遞推式
專題:計算題,點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:利用a1=1,an+1=an+
an
+
1
4
,求出數(shù)列的前幾項,總結(jié)規(guī)律,可得結(jié)論.
解答: 解:∵a1=1,an+1=an+
an
+
1
4
,
∴a2=
9
4
,a3=4,a4=
25
4
,a5=9,a6=
49
4

∴a2n=
(2n+1)2
4
,a2n-1=n2
由此可得a99=(
99+1
2
)2
=2500.
故選B.
點評:本題考查數(shù)列遞推式,考查學(xué)生的計算能力,求出數(shù)列的前幾項,總結(jié)規(guī)律是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知一個棱長為2的正方體,被一個平面截后所得幾何體的三視圖如圖所示,則該截面的面積為( 。
A、
3
10
2
B、4
C、
9
2
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|
1
2
2x<2
},B={x|lgx>0},則A∪B=( 。
A、{x|x>-1}
B、{x|-1<x<1}
C、∅
D、{x|-1<x<1或x>1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正項等比數(shù)列{an}中,已知a3a5=64,則a1+a7的最小值為( 。
A、64B、32C、16D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,AB是過F1的弦,則△ABF2的周長是( 。
A、2aB、4a
C、8aD、2a+2b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={1,2,3,4,5},集合S={1,2,3,4},則∁US=(  )
A、{5}
B、{1,2,5}
C、{2,3,4}
D、{1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2sin(ωx+φ),(ω>0,|φ|≤
π
2
)在[0,
3
]上單調(diào),且f(
π
3
)=0,f(
3
)=2,則f(0)等于( 。
A、-2
B、-1
C、-
3
2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,F(xiàn)分別是雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的左頂點、右焦點,過F的直線l與C的一條漸近線垂直且與另一條漸近線和y軸分別交于P,Q兩點.若AP⊥AQ,則C的離心率是( 。
A、
2
B、
3
C、
1+
13
4
D、
1+
17
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+b
1+x2
是定義域在(-1,1)上的奇函數(shù),且f(
1
2
)=
2
5

(1)確定函數(shù)f(x)的解析式;
(2)判斷并證明f(x)在(-1,1)上的單調(diào)性;
(3)解不等式f(x-1)<-f(x).

查看答案和解析>>

同步練習(xí)冊答案