為改善行人過(guò)馬路難的問(wèn)題,市政府決定在如圖所示的矩形區(qū)域ABCD(AB=60米,AD=104米)內(nèi)修建一座過(guò)街天橋,天橋的高GM與HN均為4
3
米,∠GEM=∠HFN=
π
6
,AE,EG,HF,F(xiàn)C的造價(jià)均為每米1萬(wàn)元,GH的造價(jià)為每米2萬(wàn)元,設(shè)MN與AB所成的角為α(α∈[0,
π
4
]),天橋的總造價(jià)(由AE,EG,GH,HF,F(xiàn)C五段構(gòu)成,GM與HN忽略不計(jì))為W萬(wàn)元.
(1)試用α表示GH的長(zhǎng);
(2)求W關(guān)于α的函數(shù)關(guān)系式;
(3)求W的最小值及相應(yīng)的角α.
(1)由題意可知∠MNP=α,故有MP=60tanα,所以在Rt△NMT中,GH=MN=
60
cosα
…(6分)
(2)W=(80+16
3
-60tanα)×1+
60
cosα
×2
=80+16
3
-60
sinα
cosα
+120
1
cosα

=80+16
3
-60
sinα-2
cosα
.…(11分)
(3)設(shè)f(α)=
sinα-2
cosα
(其中0≤α≤
π
4
)
,
f′(α)=
cosαcosα-(-sinα)(sinα-2)
cos2α
=
1-2sinα
cos2α

令f'(α)=0得1-2sinα=0,即sinα=
1
2
,得α=
π
6

列表
α(0,
π
6
)
π
6
(
π
6
,
π
4
)
f'(α)+0-
f(α)單調(diào)遞增極大值單調(diào)遞減
所以當(dāng)α=
π
6
時(shí)有f(α)max=-
3
,此時(shí)有Wmin=80+16
3
+60
3
=80+76
3

答:排管的最小費(fèi)用為80+76
3
萬(wàn)元,相應(yīng)的角α=
π
6
.…(16分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+a2(a、b∈R).
(1)當(dāng)a=0,b=-3時(shí),求函數(shù)f(x)在[-1,3]上的最大值;
(2)若函數(shù)f(x)在x=1處有極值10,求f(x)的解析式;
(3)當(dāng)a=-2時(shí),若函數(shù)f(x)在[2,+∞)上是單調(diào)增函數(shù),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
1
3
x3+
1
2
(b-1)x2+cx.
(1)當(dāng)b=-3,c=3時(shí),求f(x)的極值;
(2)若f(x)在(-∞,x1),(x2,+∞)上遞增,在(x1,x2)上遞減,x2-x1>1,求證:b2>2(b+2c);
(3)在(2)的條件下,若t<x1,試比較t2+bt+c與x1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

函數(shù)f(x)=
x2+a
x+1
(a∈R)

(1)若f(x)在點(diǎn)(1,f(1))處的切線斜率為
1
2
,求實(shí)數(shù)a的值;
(2)若f(x)在x=1取得極值,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)f(x)=
1
3
x3-2x2+3x-2在區(qū)間[0,2]上最大值與最小值的和為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=xlnx,g(x)=
x
ex
-
2
e

(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)證明:對(duì)任意m,n∈(0,+∞),都有f(m)≥g(n)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3-6x2-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間與極值;
(2)設(shè)g(x)=f(x)-c,且?x∈[-1,2],g(x)≥2c+1恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

求函數(shù)f(x)=x5+5x4+5x3+1在區(qū)間[-1,4]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,A,B是函數(shù)y=ax(a>1)在y軸右側(cè)圖象上的兩點(diǎn),分別過(guò)A,B作y軸的垂線與y軸交于E,F(xiàn)兩點(diǎn),與函數(shù)y=ex的圖象交于C,D兩點(diǎn),且A是CE的中點(diǎn).
(Ⅰ)求a的值;
(Ⅱ)當(dāng)直線BC與y軸平行時(shí),設(shè)B點(diǎn)的橫坐標(biāo)為x,四邊形ABDC的面積為f(x),求f(x)的解析式;
(Ⅲ)若對(duì)任意的正數(shù)b,關(guān)于x的不等式
2f(x)
ex-1
3exln
xb
em
在區(qū)間[1,e]上恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案