【題目】在平面直角坐標(biāo)系中,已知點,直線,設(shè)圓的半徑為,且圓心在直線上.

)若圓心的坐標(biāo)為,過點作圓的切線,求切線的方程.

)若圓上存在點,使,求圓心的橫坐標(biāo)的取值范圍.

【答案】;(

【解析】試題分析:1)根據(jù)圓心與半徑得到圓的方程,設(shè)出切線方程為,利用圓心到切線的距離1解出的值即可得切線方程;2)設(shè),由,利用兩點間的距離公式列出關(guān)系式,整理后得到點的軌跡為以為圓心,2為半徑的圓,可記為圓,由在圓上,得到圓與圓相交或相切,根據(jù)兩圓的半徑長,得出兩圓心間的距離范圍,利用兩點間的距離公式列出不等式,求出不等式的解集,即可得到的范圍.

試題解析:)圓心的坐標(biāo),半徑為,圓的方程: ,

又設(shè)切線的方程為,

∴切線到圓心的距離,

,,

,,即為,

切線的方程為

)設(shè)點,由,知: ,化簡得: ,

∴點的軌跡方程以為圓心,半徑為的圓,記為圓,

∵點在圓上,∴圓與圓的關(guān)系為相切或相交,

,∴解不等式:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中將底面為直角三角形的直棱柱稱為塹堵,將底面為矩形的棱臺稱為芻童.在如圖所示的塹堵與芻童的組合體中, 臺體體積公式: , 其中分別為臺體上、下底面面積, 為臺體高.

1)證明:直線 平面;

2)若, ,三棱錐的體積,求 該組合體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,證明: 為偶函數(shù);

(2)若上單調(diào)遞增,求實數(shù)的取值范圍;

(3)若,求實數(shù)的取值范圍,使上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在上的函數(shù)滿足:

①對于任意的,都有;

②當(dāng)時,,且

(1)求,的值,并判斷函數(shù)的奇偶性;

(2)判斷函數(shù)上的單調(diào)性;

(3)求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在海岸A處,發(fā)現(xiàn)南偏東45°方向距A(2-2)海里的B處有一艘走私船,在A處正北方向,距A海里的C處的緝私船立即奉命以10海里/時的速度追截走私船.

(1)剛發(fā)現(xiàn)走私船時,求兩船的距離;

(2)若走私船正以10海里/時的速度從B處向南偏東75°方向逃竄,問緝私船沿什么方向能最快追上走私船?并求出所需要的時間(精確到分鐘,參考數(shù)據(jù):≈1.4,≈2.5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中以O(shè)為極點,x軸正半軸為極軸建立坐標(biāo)系.圓C1 , 直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos( )=2
(1)求C1與C2交點的極坐標(biāo);
(2)設(shè)P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數(shù)方程為 (t∈R為參數(shù)),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中, 平面 , 的中點.

(1)求四棱錐的體積;

(2)求證: ;

(3)判斷線段上是否存在一點 (與點不重合),使得四點共面? (結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點,且與橢圓 有相同的焦點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若動直線與橢圓有且只有一個公共點,且與直線交于點,問:以線段為直徑的圓是否經(jīng)過一定點?若存在,求出定點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖像經(jīng)過點 ,且滿足,

(1)求的解析式;

(2)已知,求函數(shù)的最大值和最小值;

函數(shù)的圖像上是否存在這樣的點,其橫坐標(biāo)是正整數(shù),縱坐標(biāo)是一個完全平方數(shù)?如果存在,求出這樣的點的坐標(biāo);如果不存在,請說明理由

查看答案和解析>>

同步練習(xí)冊答案