已知命題p:“?x∈[1,2],x2-a≥0”,命題q:“?x∈R使x2+2ax+2-a=0”,若命題“p且q”是真命題,則實數(shù)a的取值范圍是( 。
A、{a|a≥1}
B、{a|a≤-2或1≤a≤2}
C、{a|-2≤a≤1}
D、{a|a≤-2或a=1}
考點:復(fù)合命題的真假
專題:簡易邏輯
分析:由命題p可得:a≤(x2min,解得a≤1;由命題q可得:△≥0,解得a≥1或a≤-2.由命題“p且q”是真命題,可知p,q都是真命題,即可解出.
解答: 解:命題p:“?x∈[1,2],x2-a≥0”,∴a≤(x2min,∴a≤1;
命題q:“?x∈R使x2+2ax+2-a=0”,則△=4a2-4(2-a)≥0,解得a≥1或a≤-2.
若命題“p且q”是真命題,
a≤1
a≥1或a≤-2
,解得a≤-2或a=1.
則實數(shù)a的取值范圍是{a|a≤-2或a=1}.
故選:D.
點評:本題考查了復(fù)合命題的真假判定方法、一元二次方程的實數(shù)根與判別式的關(guān)系、恒成立問題的等價轉(zhuǎn)化方法,考查了推理能力與幾十年令,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+
π
6
)(x∈R,A>0,ω>0)的最小正周期為6π,且f(
π
2
)=
3

(1)求f(x)的解析式;
(2)設(shè)α∈[
π
2
,π],f(3α+π)=
10
13
,f(3β+
2
)=-
6
5
,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右兩焦點分別為F1,F(xiàn)2,離心率e=
1
2
.設(shè)P(x0,y0)為橢圓上第一象限內(nèi)的點,△PF1F2的周長為6.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若直線l:3x0x+4y0y-12=0分別與直線x=±2交于C、D兩點.
(1)判斷直線l與橢圓E交點的個數(shù);
(2)試探究:在坐標平面內(nèi)是否存在定點,使得以CD為直徑的圓恒過該定點?若存在,求出此定點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

9臺發(fā)動機分別安裝在甲、乙、丙3個車間內(nèi),每個車間3臺,每臺發(fā)動機正常工作的概率為
1
2
.若一個車間內(nèi)至少有一臺發(fā)動機正常工作,則這個車間不需要停產(chǎn)維修,否則需要停產(chǎn)維修.
(1)求甲車間不需要停產(chǎn)維修的概率;
(2)若每個車間維修一次需1萬元(每月至多維修一次),用ξ表示每月維修的費用,求ξ的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=(
1
2
|x|,x∈R
(1)請畫出函數(shù)f(x)的大致圖象;
(2)若不等式f(x)+f(2x)≤k對于任意的x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在棱長都相等的四面體ABCD中,M,N分別為BC,CD的中點,則MN與AC所成角為(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若圓x2+y2-4x-2y+m=0上有且只有三個點到直線x+
3
y-
3
=0的距離為2,則實數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若過點(1,0)且圓心在y軸上的圓被x軸分成的兩段弧長之比為1:2,則圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下表是某校1~5月份的用電量(單位:百度)的一組數(shù)據(jù):
月份x12345
用電量y4.5432.53
用電量y與月份x之間有較好的線性相關(guān)關(guān)系,其線性回歸方程為
?
y
=-0.7x+a,則a=
 

查看答案和解析>>

同步練習冊答案