【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品x(百臺),其總成本為g(x)(萬元),其中固定成本為2萬元,并且每生產(chǎn)1百臺的生產(chǎn)成本為1萬元(總成本=固定成本+生產(chǎn)成本),銷售收入R(x)(萬元)滿足假設(shè)該產(chǎn)品產(chǎn)銷平衡,試根據(jù)上述資料

(Ⅰ)要使工廠有盈利,產(chǎn)量x應(yīng)控制在什么范圍內(nèi);

(Ⅱ)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?

(Ⅲ)當(dāng)盈利最多時,求每臺產(chǎn)品的售價.

【答案】(1)要使工廠有盈利,產(chǎn)量x應(yīng)控制在100臺到820臺內(nèi).(2)當(dāng)工廠生產(chǎn)400臺產(chǎn)品時,可使盈利最多為3.6萬元.(3)盈利最多時,每臺產(chǎn)品的售價為240元.

【解析】

試題(1)由題意,設(shè)利潤函數(shù)為 即可;(2)分別求各段上的最大值,比較大小從而求最高盈利;(3)當(dāng) 時, (萬元), (萬元百臺),從而得結(jié)果.

試題解析

解:(Ⅰ)由題意,得g(x)=x+2,

設(shè)利潤函數(shù)為f(x),

則f(x)=R(x)﹣g(x)=,

由f(x)>0,解得1<x≤5或5<x<8.2,

即1<x<8.2,

故要使工廠有盈利,產(chǎn)量x應(yīng)控制在100臺到820臺內(nèi).

(Ⅱ)當(dāng)0≤x≤5時,f(x)=﹣0.4(x﹣4)2+3.6,

即當(dāng)x=4時有最大值3.6;

當(dāng)x>5時,f(x)<8.2﹣5=3.2.

故當(dāng)工廠生產(chǎn)400臺產(chǎn)品時,可使盈利最多為3.6萬元.

(Ⅲ)當(dāng)x=4時,

R(4)=9.6(萬元),=2.4(萬元/百臺),

故盈利最多時,每臺產(chǎn)品的售價為240元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某種藥物在血液中以每小時的比例衰減,現(xiàn)給某病人靜脈注射了該藥物2500mg,設(shè)經(jīng)過x個小時后,藥物在病人血液中的量為ymg

x的關(guān)系式為______;

當(dāng)該藥物在病人血液中的量保持在1500mg以上,才有療效;而低于500mg,病人就有危險,要使病人沒有危險,再次注射該藥物的時間不能超過______小時精確到

參考數(shù)據(jù):,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,,點為棱的一點.

(Ⅰ)若點為棱的中點,證明:;

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)若函數(shù)R上的奇函數(shù),求實數(shù)a的值;

2)若對于任意,恒有,求實數(shù)a的取值范圍;

3)若,函數(shù)在區(qū)間[0,2]上的最大值為4,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)判斷并證明的奇偶性;

2)求使的取值范圍;

3)若,是否存在實數(shù),使得有三個不同的零點,若存在,求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】李冶(1192-1279),真定欒城(今屬河北石家莊市)人,金元時期的數(shù)學(xué)家、詩人、晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑,正方形的邊長等,其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個圓形水池,其中水池的邊緣與方田四邊之間的面積為畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注: 平方步為畝,圓周率按近似計算)

A.步、B.步、C.步、D.步、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校、兩個班的數(shù)學(xué)興趣小組在一次數(shù)學(xué)對抗賽中的成績繪制莖葉圖如下,通過莖葉圖比較兩班數(shù)學(xué)興趣小組成績的平均值及方差

班數(shù)學(xué)興趣小組的平均成績高于班的平均成績

班數(shù)學(xué)興趣小組的平均成績高于班的平均成績

班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差

班數(shù)學(xué)興趣小組成績的標(biāo)準(zhǔn)差大于班成績的標(biāo)準(zhǔn)差

其中正確結(jié)論的編號為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前n項和

若三角形的三邊長分別為,,求此三角形的面積;

探究數(shù)列中是否存在相鄰的三項,同時滿足以下兩個條件:此三項可作為三角形三邊的長;此三項構(gòu)成的三角形最大角是最小角的2倍若存在,找出這樣的三項,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品在30天內(nèi)每件的銷售價(元)與時間(天)的函數(shù)關(guān)系如圖表示,該商品在30天內(nèi)日銷售量(件)與時間(天)之間的關(guān)系為函數(shù).

1)根據(jù)提供的圖像,寫出商品每件的銷售價格與時間的函數(shù)關(guān)系式;

2)若已知,求該商品的日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天。(日銷售金額=每件的銷售價格×日銷售量)

查看答案和解析>>

同步練習(xí)冊答案