如圖,△ABC內(nèi)接于圓O,AB是圓O的直徑,四邊形DCBE為平行四邊形,DC平面ABC,,

(1)證明:平面ACD平面ADE;
(2)記,表示三棱錐A-CBE的體積,求函數(shù)的解析式及最大值
(1)詳見(jiàn)解析;(2)時(shí),體積有最大值 

試題分析:(1)因?yàn)樗倪呅蜠CBE為平行四邊形,所以 而易證平面,從而平面,由面面垂直的判定定理可得,平面平面 (2)三棱錐A-CBE的體積即為三棱錐E-ABC的體積,所以,當(dāng)OCAB時(shí)取得最大值,此時(shí) 
試題解析:(1)證明:因?yàn)樗倪呅蜠CBE為平行四邊形,所以
平面,平面, 
因?yàn)锳B是圓O的直徑,
平面  又,平面 
平面,所以平面平面               4分
(2)∵ DC平面ABC    ∴平面ABC
在Rt△ABE中,, 
在Rt△ABC中

)                           (8分)
備注:未指明定義域扣1分
 當(dāng)且僅當(dāng),
時(shí),體積有最大值為           (12分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如右圖,在底面為平行四邊形的四棱柱中,底面,
,,

(1)求證:平面平面;
(2)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐中,是等邊三角形,.

(1)證明::;
(2)證明:;
(3)若,且平面平面,求三棱錐體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,ABEDFC為多面體,平面ABED與平面ACFD垂直,點(diǎn)O在線段AD上,OA=1,OD=2,△OAB,△OAC,△ODE,△ODF都是正三角形.

(1)證明直線BC∥EF;
(2)求棱錐FOBED的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

四面體中,則四面體外接球的表面積為(    )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正三棱柱的底面邊長(zhǎng)為2,高為2,則它的外接球表面積為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在邊長(zhǎng)為a的正三角形鐵皮的三個(gè)角切去三個(gè)全等的四邊形,再把它的邊沿虛線折起(如圖),做成一個(gè)無(wú)蓋的正三角形底鐵皮箱,當(dāng)箱底邊長(zhǎng)為多少時(shí),箱子容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,一個(gè)底面半徑為的圓柱形量杯中裝有適量的水若放入一個(gè)半徑為的實(shí)心鐵球,水面高度恰好升高,則____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在半徑為R的半球內(nèi)有一內(nèi)接圓柱,則這個(gè)圓柱的體積的最大值是(  )
A.πR3B.πR3
C.πR3D.πR3

查看答案和解析>>

同步練習(xí)冊(cè)答案