分析 (1)利用極坐標(biāo)與直角坐標(biāo)的互化,直接求解點(diǎn)N的直角坐標(biāo)為(1,1),求出曲線C1的直角坐標(biāo)方程x2+y2=1,然后求解曲線C2的方程.
(2)將$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$代入方程(x-1)2+(y-1)2=1,設(shè)A、B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1、t2,利用韋達(dá)定理以及參數(shù)的幾何意義求解即可.
解答 解:(1)點(diǎn)N的直角坐標(biāo)為(1,1),曲線C1:ρ=1,即$\sqrt{{x^2}+{y^2}}=1$,即x2+y2=1,
曲線C2表示以N(1,1)為圓心,1為半徑的圓,方程為(x-1)2+(y-1)2=1.
(2)將$\left\{\begin{array}{l}x=2-\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$代入方程(x-1)2+(y-1)2=1,得${(1-\frac{t}{2})^2}+{(\frac{{\sqrt{3}t}}{2}-1)^2}=1$,
即${t^2}-(1+\sqrt{3})t+1=0$,設(shè)A、B兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為t1、t2,
則$\left\{\begin{array}{l}{t_1}+{t_2}=1+\sqrt{3}\\{t_1}•{t_2}=1\end{array}\right.$,易知t1>0,t2>0,
∴$\frac{1}{|PA|}+\frac{1}{|PB|}=\frac{|PA|+|PB|}{|PA|•|PB|}=\frac{{|{t_1}|+|{t_2}|}}{{|{t_1}|•|{t_2}|}}=\frac{{{t_1}+{t_2}}}{{{t_1}•{t_2}}}=1+\sqrt{3}$.
點(diǎn)評(píng) 本題考查參數(shù)方程以及極坐標(biāo)方程與普通方程的互化,曲線的參數(shù)方程的幾何意義,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
大學(xué) | 甲 | 乙 | 丙 | 丁 |
人數(shù) | 8 | 12 | 8 | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45π | B. | 24π | C. | 32π | D. | 48π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com