【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f (2﹣x)=f(x)當(dāng)x∈[0,1]時(shí),f (x)=ex , 若函數(shù)y=[f (x)]2+(m+l)f(x)+n在區(qū)間[﹣k,k](k>0)內(nèi)有奇數(shù)個(gè)零點(diǎn),則m+n=(
A.﹣2
B.0
C.1
D.2

【答案】A
【解析】解:∵y=f(x)是偶函數(shù); 又∵函數(shù)y=[f(x)]2+(m+1)f(x)+n在區(qū)間[﹣k,k]內(nèi)有奇數(shù)個(gè)零點(diǎn);
∴若該函數(shù)在[﹣k,0)有零點(diǎn),則對應(yīng)在(0,k]有相同的零點(diǎn);
∵零點(diǎn)個(gè)數(shù)為奇數(shù),
∴x=0時(shí)該函數(shù)有零點(diǎn);
∴0=1+m+1+n;
∴m+n=﹣2.
故選:A.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=2an﹣2.
(1)求a1 , a2 , a3并由此猜想an的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)為定義在R上的奇函數(shù).且滿足f(3)=6,當(dāng)x>0時(shí)f′(x)>2,則不等式f(x)﹣2x<0的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,2,3},B={x∈Z|(x+2)(x﹣3)<0},則A∪B(
A.{1}
B.{﹣1,0,1,2,3}
C.{1,2}
D.{0,1,2,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在等差數(shù)列{an}中,若a22+2a2a8+a6a10=16,則a4a6=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的方程為y=x+1,則該直線l的傾斜角為(
A.30°
B.45°
C.60°
D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“近似替代”中,函數(shù)f(x)在區(qū)間[xi , xi+1]上的近似值(
A.只能是左端點(diǎn)的函數(shù)值f(xi
B.只能是右端點(diǎn)的函數(shù)值f(xi+1
C.可以是該區(qū)間內(nèi)的任一函數(shù)值f(ξi)(ξi∈[xi , xi+1])
D.以上答案均正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的不等式2<log2(x+5)<3的整數(shù)解的集合為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合A={x|x2=1},B={x|mx=1},且A∪B=A,則由實(shí)數(shù)m的值組成的集合為

查看答案和解析>>

同步練習(xí)冊答案