設(shè)z=x+y,其中x,y滿足
x+2y≥0
x-y≥0
0≤x≤k
,當(dāng)z的最大值為6時(shí),k的值為(  )
A、3B、4C、5D、6
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對(duì)應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí)先求出k的值.
解答: 解:作出不等式對(duì)應(yīng)的平面區(qū)域,
由z=x+y,得y=-x+z,
平移直線y=-x+z,由圖象可知當(dāng)直線y=-x+z經(jīng)過(guò)點(diǎn)A時(shí),直線y=-x+z的截距最大,此時(shí)z最大為6.即x+y=6.
x+y=6
x-y=0
,
解得
x=3
y=3
,即A(3,3),
∵直線x=k過(guò)A,
∴k=3.
故選:A.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用以,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)變量x,y滿足
5x+2y-18≤0
2x-y≥0
x+y-3≥0
,若直線kx-y+2=0經(jīng)過(guò)該可行域,則k的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題正確的是( 。
A、若兩條直線和同一個(gè)平面所成的角相等,則這兩條直線平行
B、若一個(gè)平面內(nèi)有三個(gè)點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行
C、若兩個(gè)平面都垂直于第三個(gè)平面,則這兩個(gè)平面平行
D、若一條直線平行于兩個(gè)相交平面,則這條直線與這兩個(gè)平面的交線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給岀四個(gè)命題:
(1)若一個(gè)角的兩邊分別平行于另一個(gè)角的兩邊,則這兩個(gè)角相等;
(2)α,β 為兩個(gè)不同平面,直線a?α,直線b?α,且a∥β,b∥β,則α∥β;
(3)α,β 為兩個(gè)不同平面,直線m⊥α,m⊥β  則α∥β;
(4)α,β 為兩個(gè)不同平面,直線m∥α,m∥β,則α∥β.
其中正確的是( 。
A、(1)B、(2)
C、(3)D、(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在復(fù)平面內(nèi),點(diǎn)A表示復(fù)數(shù)z,則圖中表示z的共軛復(fù)數(shù)的點(diǎn)是( 。
A、AB、BC、CD、D

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,b>0,c>0下列不等關(guān)系不恒成立的是(  )
A、c3+c+1>c2+
1
4
c-1
B、|a-b|≤|a-c|+|b-c|
C、若a+4b=1,則
1
a
+
1
b
>6.8
D、ax2+bx+c≥0(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=1,a2=
1
4
,且an+1=
(n-1)an
n-an
(n=2,3,4,…).Sn為數(shù)列{bn}的前n項(xiàng)和,且
4Sn=bnbn+1,b1=2(n=1,2,3,…).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=bn2
1
3an
+
2
3
,求數(shù)列{cn}的前n項(xiàng)的和Pn;
(3)證明對(duì)一切n∈N*,有
n
k=1
ak2
7
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
m
=(2cos2x,
3
),
n
=(1,sin2x)函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的對(duì)稱中心; 
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=3,c=1,且a>b>c,求
3
a-b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=22.5,b=2.50,c=(
1
2
2.5,則a,b,c的大小關(guān)系是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案