【題目】網(wǎng)購已經(jīng)成為我們?nèi)粘I钪械囊徊糠,某地區(qū)隨機(jī)調(diào)查了100名男性和100名女性在雙十一活動(dòng)中用于網(wǎng)購的消費(fèi)金額,數(shù)據(jù)整理如下:

男性消費(fèi)金額頻數(shù)分布表

消費(fèi)金額

(單位:元)

0~500

500~1000

1000~1500

1500~2000

2000~3000

人數(shù)

15

15

20

30

20

1)試分別計(jì)算男性、女性在此活動(dòng)中的平均消費(fèi)金額;

2)如果分別把男性、女性消費(fèi)金額與中位數(shù)相差不超過200元的消費(fèi)稱作理性消費(fèi),試問是否有5成以上的把握認(rèn)為理性消費(fèi)與性別有關(guān).

附:

0.50

0.40

0.25

0.15

0.10

0.05

0.455

0.708

1.323

2.072

2.706

3.841

【答案】11425元,1100元;(2)有5成以上的把握認(rèn)為理性消費(fèi)與性別有關(guān)

【解析】

1)根據(jù)表格中男性平均消費(fèi)金額和頻率分布直方圖中女性平均消費(fèi)金額,利用平均數(shù)的計(jì)算公式,即可求解;

2)由(1),求得女性的理性消費(fèi)區(qū)間為人數(shù),男性理性消費(fèi)區(qū)間為人數(shù),得出的列聯(lián)表,利用公式求得,結(jié)合附表,即可得到結(jié)論.

1)由表格知男性平均消費(fèi)金額為

(元)

由頻率分布直方圖知女性平均消費(fèi)金額為:

(元)

2)由男性消費(fèi)金額頻數(shù)分布表,可得男性的消費(fèi)的中位數(shù)為1500元,其中男性理性消費(fèi)區(qū)間為,可得人數(shù)為人,

由頻率分布直方圖可得,女性消費(fèi)的中位數(shù)為1000元,其中女性的理性消費(fèi)區(qū)間為,可得人數(shù)為人,

所以列聯(lián)表為:

女性

男性

合計(jì)

理性消費(fèi)

16

20

36

非理性消費(fèi)

84

80

164

合計(jì)

100

100

200

,由

∴有5成以上的把握認(rèn)為理性消費(fèi)與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱錐的所有頂點(diǎn)都在球的球面上,該四棱錐的五個(gè)面所在的平面截球面所得的圓大小相同,若正四棱錐的高為2,則球的表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】要得到函數(shù)的圖象,需將函數(shù)的圖象上所有的點(diǎn)(

A.向右平移個(gè)單位長度后,再將圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來的,縱坐標(biāo)不變

B.向左平移個(gè)單位長度后,再將圖象上所有點(diǎn)的橫坐標(biāo)縮小到原來的,縱坐標(biāo)不變

C.向左平移個(gè)單位長度后,再將圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

D.向右平移個(gè)單位長度后,再將圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們聽到的美妙弦樂,不是一個(gè)音在響,而是許多個(gè)純音的合成,稱為復(fù)合音.復(fù)合音的響度是各個(gè)純音響度之和.琴弦在全段振動(dòng),產(chǎn)生頻率為的純音的同時(shí),其二分之一部分也在振動(dòng),振幅為全段的,頻率為全段的2倍;其三分之一部分也在振動(dòng),振幅為全段的,頻率為全段的3倍;其四分之一部分也在振動(dòng),振幅為全段的,頻率為全段的4倍;之后部分均忽略不計(jì).已知全段純音響度的數(shù)學(xué)模型是函數(shù)為時(shí)間,為響度),則復(fù)合音響度數(shù)學(xué)模型的最小正周期是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)平面圖如圖1所示,為邊界上的點(diǎn).已知邊界是一段拋物線,其余邊界均為線段,且,拋物線頂點(diǎn)的距離.以所在直線為軸,所在直線為軸,建立平面直角坐標(biāo)系.

1)求邊界所在拋物線的解析式;

2)如圖2,該景區(qū)管理處欲在區(qū)域內(nèi)圍成一個(gè)矩形場地,使得點(diǎn)在邊界上,點(diǎn)在邊界上,試確定點(diǎn)的位置,使得矩形的周長最大,并求出最大周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC的內(nèi)角A,B,C所對(duì)應(yīng)的邊分別為abc

)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sinA+C);

)若a,bc成等比數(shù)列,求cosB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,真四棱柱的底面是菱形,,,E,M,N分別是BC,的中點(diǎn).

1)證明:;

2)求平面DMN與平面所成銳角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時(shí)間沒有發(fā)生在規(guī)模群體感染的標(biāo)志為連續(xù)10天,每天新增疑似病例不超過7”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例數(shù)據(jù),一定符合該標(biāo)志的是

A. 甲地:總體均值為3,中位數(shù)為4 B. 乙地:總體均值為1,總體方差大于0

C. 丙地:中位數(shù)為2,眾數(shù)為3 D. 丁地:總體均值為2,總體方差為3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下四個(gè)命題:

①數(shù)列為等差數(shù)列的充要條件是其通項(xiàng)公式為n的一次函數(shù).

②在面積為S的邊AB上任取一點(diǎn)P,則的面積大于的概率為.

③將多項(xiàng)式分解因式得,則.

④若那么由,那么由以及x軸所圍成的圖形一定在x軸下方.

其中正確命題的序號(hào)為_____________(把所有正確命題的序號(hào)都填上)

查看答案和解析>>

同步練習(xí)冊(cè)答案