若m是5和
16
5
的等比中項,則圓錐曲線
x2
m
+y2=1的離心率是( 。
A、
3
2
B、
5
C、
3
2
5
2
D、
3
2
5
考點:雙曲線的簡單性質,等比數(shù)列,橢圓的簡單性質
專題:圓錐曲線的定義、性質與方程
分析:利用等比中項求出m,然后求解圓錐曲線的離心率即可.
解答: 解:∵m是5和
16
5
的等比中項,
∴m2=5×
16
5
=16,
即m=4或m=-4,
當m=4時,圓錐曲線
x2
4
+y2=1為橢圓,
∴a=2,b=1,c=
3
,
∴e=
c
a
=
3
2
,
當m=-4時,圓錐曲線-
x2
4
+y2=1為雙曲線,
∴a=1,b=2,c=
5
,
∴e=
c
a
=
5
,
故選:D.
點評:本題主要考查了等比中項和圓錐曲線的離心率的問題,屬于基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足
.
z-4
1z
|=0,則z的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系中,已知圓的方程為x2-8xcosθ+y2-6ysinθ+7cos2θ+8=0,在以直角坐標系的原點為極點,x軸正半軸為極軸的極坐標系中,有點A(2,0)
(Ⅰ)求圓心軌跡的普通方程C;
(Ⅱ)若點P在曲線C上,求|PA|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓M:(x-3)2+y2=9,過圓心M的直線與拋物線y2=12x和圓M的交點自上而下依次為點A,B,C,D,則
AB
CD
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點O和點F分別為橢圓
x2
9
+
y2
8
=1的中心和左焦點,點P為橢圓上的任意一點,則
OF
FP
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{lgan}是等差數(shù)列,求證:數(shù)列{an}是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在研究關于曲線C:
x4
16
-y2=1的性質過程中,有同學得到了如下結論①曲線C關于原點、x,y軸對稱 ②曲線C的漸近線為y=±
x
2
 ③曲線C的兩個頂點分別為(-2,0),(2,0)④曲線C上的點到原點的最近距離為2.上述判斷正確的編號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

兩個等差數(shù)列{an}和{bn}的前n項和分別為Sn和Tn,若
Sn
Tn
=
3n-1
n+7
,則
a7
b7
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是等差數(shù)列,{bn}是各項都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b3=9,a5+b2=11.
(Ⅰ)求{an},{bn}的通項公式;
(Ⅱ)求數(shù)列{
an
bn
}的前n項和Sn

查看答案和解析>>

同步練習冊答案