21、對于集合A={x|x=m2-n2,m∈Z,n∈Z},因為16=52-32,所以16∈A,研究下列問題:
(1) 1,2,3,4,5,6六個數(shù)中,哪些屬于A,哪些不屬于A,為什么?
(2) 討論集合B={2,4,6,8,…,2n,…}中有哪些元素屬于A,試給出一個一般的結(jié)論,不必證明.
分析:(1)根據(jù)集合A的元素的性質(zhì)證明1,3,4,5∈A,對于2和6用反證法進行證明,證明過程注意根據(jù)整數(shù)是奇(偶)進行分類說明;
(2)根據(jù)集合A的元素的性質(zhì),在偶數(shù)中找出是集合A的元素和一些不是的A的元素,由這些數(shù)的特征進行歸納得出結(jié)論.
解答:解:(1)∵1=12-02;3=22-12;5=32-22;4=22-02;
∴1,3,4,5∈A,且2,6∉A;(5分)
設(shè)2∈A,得存在m,n∈Z,使2=m2-n2成立.(m-n)(m+n)=2
當(dāng)m,n同奇或同偶時,m-n,m+n均為偶數(shù)
∴(m-n)(m+n)為4的倍數(shù),與2不是4倍數(shù)矛盾.
當(dāng)m,n同分別為奇,偶數(shù)時,m-n,m+n均為奇數(shù)
(m-n)(m+n)為奇數(shù),與2是偶數(shù)矛盾.∴2∉A同理6∉A(8分)
(2)4=22-02;8=32-12;12=42-22;
2,6,10,14,∉A,結(jié)論:是4的倍數(shù)的數(shù)屬于A.(12分)
點評:本題考查了元素與集合的關(guān)系,只要根據(jù)集合元素滿足的性質(zhì)進行判斷,利用歸納推理思想方法進行歸納出集合元素的性質(zhì)的結(jié)論,考查了分析和解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||x-a|=4},集合B={1,2,b}.
(1)是否存在實數(shù)a的值,使得對于任意實數(shù)b都有A⊆B?若存在,求出對應(yīng)的a;若不存在,試說明理由;
(2)若A⊆B成立,求出對應(yīng)的實數(shù)對 (a,b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-3x+2=0},B={y|y=x2-2x+3,x∈A},現(xiàn)在我們定義對于任意兩個集合M,N的運算:M?N={x|x∈M∪N,且x?M∩N},則A?B=( 。
A、{1,2,3}B、{1,2}C、{2,3}D、{1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于集合A={x|x=m2-n2,m∈Z,n∈Z},因為16=52-32,所以16∈A,研究下列問題:
(1) 1,2,3,4,5,6六個數(shù)中,哪些屬于A,哪些不屬于A,為什么?
(2) 討論集合B={2,4,6,8,…,2n,…}中有哪些元素屬于A,試給出一個一般的結(jié)論,不必證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于集合A={x|x=m2-n2,m∈Z,n∈Z},因為16=52-32,所以16∈A,研究下列問題:
(1) 1,2,3,4,5,6六個數(shù)中,哪些屬于A,哪些不屬于A,為什么?
(2) 討論集合B={2,4,6,8,…,2n,…}中有哪些元素屬于A,試給出一個一般的結(jié)論,不必證明.

查看答案和解析>>

同步練習(xí)冊答案