分析 先將函數(shù)配成x-1+$\frac{m}{x-1}$+1的形式,再運(yùn)用基本不等式最值,根據(jù)取等條件確定m的值.
解答 解:∵x>1,∴x-1>0,
∴y=x+$\frac{m}{x-1}$=x-1+$\frac{m}{x-1}$+1≥2$\sqrt{(x-1)(\frac{m}{x-1})}$+1=2$\sqrt{m}$+1,
當(dāng)且僅當(dāng)x-1=$\frac{m}{x-1}$,即x=3時取等號.此時m=4,函數(shù)的最小值為5.
故答案為:4.
點(diǎn)評 本題主要考查了運(yùn)用基本不等式求函數(shù)的最值,以及取等條件的分析,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | $\frac{5}{4}$$\sqrt{3}$ | D. | $\frac{9}{4}$$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com