一個與球心距離為1的平面截球所得的圓面面積為,則球的表面積為(      )
A.B.C.D.
B

試題分析:由平面截球所得圓的面積為,可得該小圓的半徑為1,而球心到該截面的距離,由球的性質:球心與小圓圓心相連垂直于小圓所在的平面可知球的半徑,所以球的表面積為,選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐PABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,BC=5,DC=3,AD=4,∠PAD=60°.

(1)當正視方向與向量的方向相同時,畫出四棱錐PABCD的正視圖(要求標出尺寸,并寫出演算過程);
(2)若M為PA的中點,求證:DM∥平面PBC;
(3)求三棱錐DPBC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知直三棱柱中,,,D為BC的中點.

(1)求證:∥面;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

將邊長為a的正方形ABCD沿對角線AC折起,使BD=a,則三棱錐D -ABC的體積為    .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個與球心距離為1的平面截球體所得的圓面面積為π,則球的體積為(  )
A.B.C.D.8π

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖所示,正方體ABCD-A1B1C1D1的棱長為1,E,F(xiàn)分別為線段AA1,B1C上的點,則三棱錐D1-EDF的體積為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知A,B,CD是同一球面上的四個點,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,則該球的表面積為(  )
A.16πB.24πC.32πD.48π

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

有一個倒圓錐形容器,它的軸截面是一個正三角形,在容器內放一個半徑為r的鐵球,并注入水,使水面與球正好相切,然后將球取出,求這時容器中水的深度.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,在三棱柱A1B1C1ABC中,D,E,F分別是AB,AC,AA1的中點.設三棱錐FADE的體積為V1,三棱柱A1B1C1ABC的體積為V2,則V1∶V2=    

查看答案和解析>>

同步練習冊答案