【題目】某產(chǎn)品的三個質(zhì)量指標(biāo)分別為xyz,用綜合指標(biāo)Sxyz評價該產(chǎn)品的等級.若S≤4, 則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號

A1

A2

A3

A4

A5

質(zhì)量指標(biāo)

(x, y, z)

(1,1,2)

(2,1,1)

(2,2,2)

(1,1,1)

(1,2,1)

產(chǎn)品編號

A6

A7

A8

A9

A10

質(zhì)量指標(biāo)

(x, y, z)

(1,2,2)

(2,1,1)

(2,2,1)

(1,1,1)

(2,1,2)

(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;

(2)在該樣本的一等品中, 隨機(jī)抽取2件產(chǎn)品,

() 用產(chǎn)品編號列出所有可能的結(jié)果;

() 設(shè)事件B為“在取出的2件產(chǎn)品中, 每件產(chǎn)品的綜合指標(biāo)S都等于4求事件B發(fā)生的概率.

【答案】(1)0.6;(2)

【解析】試題分析:(1)首先將3項(xiàng)指標(biāo)相加,求出綜合指標(biāo)S.然后找出其中的產(chǎn)品,便可估計(jì)出該批產(chǎn)品的一等品率.2)(1)根據(jù)(1)題結(jié)果可知, 、、、為一等品,共6.從這6件一等品中隨機(jī)抽取2件產(chǎn)品的所有可能結(jié)果為: , , , ,共15.2)在該樣本的一等品中,綜合指標(biāo)S等于4的產(chǎn)品編號分別為、、、,則事件B發(fā)生的所有可能結(jié)果為6.由古典概型概率公式可得事件B發(fā)生的概率.

試題解析:(110件產(chǎn)品的綜合指標(biāo)S如下表所示:

產(chǎn)品編號











S

4

4

6

3

4

5

4

5

3

5

其中的有、、、,共6件,故該樣本的一等品率為,從而可估計(jì)該批產(chǎn)品的一等品率為.

2)(1)在該樣本的一等品中,隨機(jī)抽取2件產(chǎn)品的所有可能結(jié)果為, , ,共15.2)在該樣本的一等品中,綜合指標(biāo)S等于4的產(chǎn)品編號分別為、、,則事件B發(fā)生的所有可能結(jié)果為6.所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的方程是,雙曲線的左右焦點(diǎn)分別為的左右頂點(diǎn),而的左右頂點(diǎn)分別是的左右焦點(diǎn).

1)求雙曲線的方程;

2)若直線與雙曲線恒有兩個不同的交點(diǎn),且的兩個交點(diǎn)AB滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于x的二次方程px2+(p﹣1)x+p+1=0有兩個不相等的正根,且一根大于另一根的兩倍,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, 為橢圓 的左、右焦點(diǎn),點(diǎn)在橢圓上,且面積的最大值為

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線與橢圓交于, 兩點(diǎn), 的面積為1, ),當(dāng)點(diǎn)在橢圓上運(yùn)動時,試問是否為定值?若是定值,求出這個定值;若不是定值,求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中
①函數(shù)f(x)=( x的遞減區(qū)間是(﹣∞,+∞);
②若函數(shù)f(x)= ,則函數(shù)定義域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x﹣y),那么(3,1)在映射f下的象是(4,2).
其中正確命題的序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),曲線在點(diǎn)處的切線與直線垂直.

(Ⅰ)試比較的大小,并說明理由;

(Ⅱ)若函數(shù)有兩個不同的零點(diǎn), ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的偶函數(shù)f(x),對任意x1 , x2∈[0,+∞)(x1≠x2),有 <0,則(
A.f(3)<f(﹣2)<f(1)
B.f(1)<f(﹣2)<f(3)
C.f(﹣2)<f(1)<f(3)
D.f(3)<f(1)<f(﹣2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中的奇函數(shù)是(
A.f(x)=x+1
B.f(x)=3x2﹣1
C.f(x)=2(x+1)3﹣1
D.f(x)═﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實(shí)數(shù)a≠0,函數(shù)f(x)= ,若f(1﹣a)=f(1+a),則a的值為(
A.﹣
B.﹣
C.﹣ 或﹣
D.﹣1

查看答案和解析>>

同步練習(xí)冊答案