已知△ABC中,角A,B,C所對的邊分別為a,b,c,b=2,B=45°,若三角形有兩解,則a的取值范圍是
 
考點:正弦定理
專題:解三角形
分析:由題意判斷出三角形有兩解時,A的范圍,通過正弦定理及正弦函數(shù)的性質(zhì)推出a的范圍即可.
解答: 解:由AC=b=2,要使三角形有兩解,就是要使以C為圓心,半徑為2的圓與BA有兩個交點,
當(dāng)A=90°時,圓與AB相切;
當(dāng)A=45°時交于B點,也就是只有一解,
∴45°<A<90°,即
2
2
<sinA<1,
由正弦定理以及asinB=bsinA.可得:a=
bsinA
sinB
=2
2
sinA,
∵2
2
sinA∈(2,2
2
).
∴a的取值范圍是(2,2
2
).
故答案為:(2,2
2
點評:此題考查了正弦定理,正弦函數(shù)的圖象與性質(zhì),以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=2x+1,f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N*.若fn(x)的圖象經(jīng)過點(an,1)則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)=10x,且f(x)的反函數(shù)為g(x),則g(8)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列圖形中,不可能是函數(shù)圖象的是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:(81-
1
4
+27-
1
3
)(81-
1
4
-27-
1
3
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

傾斜角等于45°,在y軸上的截距等于2的直線方程式(  )
A、y=-x-2
B、y=-x+2
C、y=x-2
D、y=x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知冪函數(shù)y=f(x)的圖象過點(
1
2
,
2
2
),則f(2)=( 。
A、-
2
B、
2
C、-2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為D,若任取x1∈D,存在唯一的x2∈D,滿足
f(x1)+f(x2)
2
=C,則稱C為函數(shù)y=f(x)在D上的均值,給出下列五個函數(shù):①y=x;②y=x2;③y=4sinx;④y=lgx;⑤y=2x.則所有滿足在其定義域上的均值為2的函數(shù)的序號為( 。
A、①③B、①④
C、①④⑤D、②③④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)的定義域是[-6,2],則函數(shù)y=f(
x
)的定義域
 

查看答案和解析>>

同步練習(xí)冊答案