設(shè)四面體SABC的所有棱長均為a,E、F分別是棱SC和AB的中點,則異面直線EF與SA所成的角等于( )
A.90°
B.60°或120°
C.45°
D.45°或135°
【答案】分析:先通過平移將兩條異面直線平移到同一個起點AC的中點D,得到的銳角或直角就是異面直線所成的角,在三角形中再利用余弦定理求出此角即可.
解答:解:如圖,取AC的中點D,連接DE、DF,
則ED∥SA,
∴∠DEF為異面直線EF與SA所成的角,
∵棱長為a,則DE=,DF=,而ED⊥DF,
∴∠DEF=45°,
故選C.
點評:本小題主要考查異面直線所成的角,考查空間想象能力、運算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)四面體SABC的所有棱長均為a,E、F分別是棱SC和AB的中點,則異面直線EF與SA所成的角等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)四面體SABC的所有棱長均為a,E、F分別是棱SC和AB的中點,則異面直線EF與SA所成的角等于(  )
A.90°B.60°或120°C.45°D.45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省松原市油田高中高一(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)四面體SABC的所有棱長均為a,E、F分別是棱SC和AB的中點,則異面直線EF與SA所成的角等于( )
A.90°
B.60°或120°
C.45°
D.45°或135°

查看答案和解析>>

同步練習(xí)冊答案